scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Science & Technology in 2010"


Journal ArticleDOI
TL;DR: A molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures suggests the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states.
Abstract: Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer−Emmett−Teller (BET)−N2 surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical−chemical transitions as charring temperature increases from 100 to 700 °C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars, the crystalline character of the precursor ma...

2,283 citations


Journal ArticleDOI
TL;DR: An empirical kinetic law is proposed that reproduces the observed effects of dissolution time, pH, humic/fulvic acid content, and temperature observed here in the low range of nanosilver concentration most relevant for the environment.
Abstract: Many important aspects of nanosilver behavior are influenced by the ionic activity associated with the particle suspension, including antibacterial potency, eukaryotic toxicity, environmental release, and particle persistence. The present study synthesizes pure, ion-free, citrate-stabilized nanosilver (nAg) colloids as model systems, and measures their time-dependent release of dissolved silver using centrifugal ultrafiltration and atomic absorption spectroscopy. Ion release is shown to be a cooperative oxidation process requiring both dissolved dioxygen and protons. It produces peroxide intermediates, and proceeds to complete reactive dissolution under some conditions. Ion release rates increase with temperature in the range 0−37 °C, and decrease with increasing pH or addition of humic or fulvic acids. Sea salts have only a minor effect on dissolved silver release. Silver nanoparticle surfaces can adsorb Ag+, so even simple colloids contain three forms of silver: Ag0 solids, free Ag+ or its complexes, an...

1,571 citations


Journal ArticleDOI
TL;DR: The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH.
Abstract: There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. We dispersed three different metal oxide nanoparticles (TiO(2), ZnO and CeO(2)) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater, and measured their electrophoretic mobility, state of aggregation, and rate of sedimentation. The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 microm s(-1) V(-1) cm. These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions.

1,165 citations


Journal ArticleDOI
TL;DR: The results of this research are consistent with the widespread reactivity reported for base-activated persulfate when it is used for ISCO.
Abstract: Base is the most commonly used activator of persulfate for the treatment of contaminated groundwater by in situ chemical oxidation (ISCO). A mechanism for the base activation of persulfate is proposed involving the base-catalyzed hydrolysis of persulfate to hydroperoxide anion and sulfate followed by the reduction of another persulfate molecule by hydroperoxide. Reduction by hydroperoxide decomposes persulfate into sulfate radical and sulfate anion, and hydroperoxide is oxidized to superoxide. The base-catalyzed hydrolysis of persulfate was supported by kinetic analyses of persulfate decomposition at various base:persulfate molar ratios and an increased rate of persulfate decomposition in D2O vs H2O. Stoichiometric analyses confirmed that hydroperoxide reacts with persulfate in a 1:1 molar ratio. Addition of hydroperoxide to basic persulfate systems resulted in rapid decomposition of the hydroperoxide and persulfate and decomposition of the superoxide probe hexachloroethane. The presence of superoxide was...

1,111 citations


Journal ArticleDOI
TL;DR: Dose responses for both intensity and duration showed large benefits from short engagements in green exercise, and then diminishing but still positive returns, confirming that the environment provides an important health service.
Abstract: Green exercise is activity in the presence of nature. Evidence shows it leads to positive short and long-term health outcomes. This multistudy analysis assessed the best regime of dose(s) of acute exposure to green exercise required to improve self-esteem and mood (indicators of mental health). The research used meta-analysis methodology to analyze 10 UK studies involving 1252 participants. Outcomes were identified through a priori subgroup analyses, and dose−responses were assessed for exercise intensity and exposure duration. Other subgroup analyses included gender, age group, starting health status, and type of habitat. The overall effect size for improved self-esteem was d = 0.46 (CI 0.34−0.59, p < 0.00001) and for mood d = 0.54 (CI 0.38−0.69, p < 0.00001). Dose responses for both intensity and duration showed large benefits from short engagements in green exercise, and then diminishing but still positive returns. Every green environment improved both self-esteem and mood; the presence of water genera...

1,075 citations


Journal ArticleDOI
TL;DR: The impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming, and it is indicated that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location.
Abstract: Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO2 and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstra...

1,064 citations


Journal ArticleDOI
TL;DR: Recent advances in the understanding of biogeochemical redox processes are highlighted and their impact on contaminant fate and transport, including future research needs are highlighted.
Abstract: Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, a...

1,029 citations


Journal ArticleDOI
TL;DR: In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined, and essential equations used to assess particle-particle and particle-surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described.
Abstract: The ever-increasing use of engineered nanomaterials will lead to heightened levels of these materials in the environment. The present review aims to provide a comprehensive overview of current knowledge regarding nanoparticle transport and aggregation in aquatic environments. Nanoparticle aggregation and deposition behavior will dictate particle transport potential and thus the environmental fate and potential ecotoxicological impacts of these materials. In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined. Essential equations used to assess particle−particle and particle−surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described. Theoretical and experimental approaches for evaluating nanoparticle aggregation and deposition are presented, and the major findings of laboratory studies examining these processes are also summarized. Finally, we describe some of the chall...

1,028 citations


Journal ArticleDOI
TL;DR: The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated.
Abstract: The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanoparticles to prevent aggregation. The AgNPs examined in the study were as follows: (a) uncoated AgNPs (H2−AgNPs), (b) electrostatically stabilized (citrate and NaBH4−AgNPs), (c) sterically stabilized (polyvinylpyrrolidone (PVP)-AgNPs), and (d) electrosterically stabilized (branched polyethyleneimine (BPEI)-AgNPs)). The uncoated (H2−AgNPs), the citrate, and NaBH4-coated AgNPs aggregated at higher ionic strengths (100 mM NaNO3) and/or acidic pH (3.0). For these three nanomaterials, chloride (Cl−, 10 mM), as a background electrolyte, resulted in a minimal change in the hydrodynamic diameter even at low pH (3.0). This was limited by the presence of residual silver ions, which resulted in the formation of stable negatively charged AgCl colloi...

1,017 citations


Journal ArticleDOI
TL;DR: Because biochar lability was found to be strongly controlled by the relative amount of a more aliphatic and volatile component, measurements of volatile weight content may be a convenient predictor of biochar C longevity.
Abstract: Pyrogenic or “black” carbon is a soil and sediment component that may control pollutant migration. Biochar, black carbon made intentionally by biomass pyrolysis, is increasingly discussed as a possible soil amendment to increase fertility and sequester carbon. Though thought to be extremely refractory, it must degrade at some rate. Better understanding of the rates and factors controlling its remineralization in the environment is needed. Release of CO2 was measured over 1 year from microbial and sterile incubations of biochars made from a range of biomass types and combustion conditions. Carbon release from abiotic incubations was 50−90% that of microbially inoculated incubations, and both generally decreased with increasing charring temperature. All biochars displayed log−linearly decreasing mineralization rates that, when modeled, were used to calculate 100 year C losses of 3−26% and biochar C half-lives on orders ranging from 102 to 107 years. Because biochar lability was found to be strongly controll...

924 citations


Journal ArticleDOI
TL;DR: Test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK show habitats that are downwind acting as potential sinks for the accumulation of debris.
Abstract: The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas whe...

Journal ArticleDOI
TL;DR: The development of a high performance thin-film composite membrane for forward osmosis applications with high water flux was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer.
Abstract: Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared wi...

Journal ArticleDOI
TL;DR: Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems, which may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.
Abstract: Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.

Journal ArticleDOI
TL;DR: The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(-) ions.
Abstract: The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO(2) nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction the exposed Ag surface area was measured qualitatively by O(2) chemisorption. Furthermore, the fraction of dissolved nanosilver was determined by measuring the released (leached) Ag(+) ion concentration in aqueous suspensions of such Ag/SiO(2) particles. The antibacterial effect of Ag(+) ions was distinguished from that of nanosilver particles by monitoring the growth of E. coli populations in the presence and absence of Ag/SiO(2) particles. The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(+) ions. In contrast, when relatively larger Ag nanoparticles were used, the concentration of the released Ag(+) ions was lower. Then the antibacterial activity of the released Ag(+) ions and nanosilver particles was comparable.

Journal ArticleDOI
TL;DR: At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable.
Abstract: The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage sig...

Journal ArticleDOI
TL;DR: Kinetic modeling of phenol destruction demonstrated that RHS contributed significantly to phenol Destruction, mitigating the impact of HO* scavenging, and the formation of halogenated byproducts was minimal.
Abstract: Advanced oxidation processes (AOPs) generating nonselective hydroxyl radicals (HO*) provide a broad-spectrum contaminant destruction option for the decontamination of waters. Halide ions are scavengers of HO* during AOP treatment, such that treatment of saline waters would be anticipated to be ineffective. However, HO* scavenging by halides converts HO* to radical reactive halogen species (RHS) that participate in contaminant destruction but react more selectively with electron-rich organic compounds. The effects of Cl-, Br-, and carbonates (H2CO3+HCO3-+CO3(2-)) on the UV/H2O2 treatment of model compounds in saline waters were evaluated. For single target organic contaminants, the impact of these constituents on contaminant destruction rate suppression at circumneutral pH followed the order Br->carbonates>Cl-. Traces of Br- in the NaCl stock had a greater effect than Cl- itself. Kinetic modeling of phenol destruction demonstrated that RHS contributed significantly to phenol destruction, mitigating the impact of HO* scavenging. The extent of treatment efficiency reduction in the presence of halides varied dramatically among different target organic compounds. Destruction of contaminants containing electron-poor reaction centers in seawater was nearly halted, while 17beta-estradiol removal declined by only 3%. Treatment of mixtures of contaminants with each other and with natural organic matter (NOM) was evaluated. Although NOM served as an oxidant scavenger, conversion of nonselective HO* to selective radicals due to the presence of anions enhanced the efficiency of electron-rich contaminant removal in saline waters by focusing the oxidizing power of the system away from the NOM toward the target contaminant. Despite the importance of contaminant oxidation by halogen radicals, the formation of halogenated byproducts was minimal.

Journal ArticleDOI
TL;DR: ARG from all classes of antibiotics tested have significantly increased since 1940, but especially within the tetracyclines, with some individual ARG being >15 times more abundant now than in the 1970s.
Abstract: Mass production and use of antibiotics and antimicrobials in medicine and agriculture have existed for over 60 years, and has substantially benefited public health and agricultural productivity throughout the world. However, there is growing evidence that resistance to antibiotics (AR) is increasing both in benign and pathogenic bacteria, posing an emerging threat to public and environmental health in the future. Although evidence has existed for years from clinical data of increasing AR, almost no quantitative environmental data exist that span increased industrial antibiotic production in the 1950s to the present; i.e., data that might delineate trends in AR potentially valuable for epidemiological studies. To address this critical knowledge gap, we speculated that AR levels might be apparent in historic soil archives as evidenced by antibiotic resistance gene (ARG) abundances over time. Accordingly, DNA was extracted from five long-term soil-series from different locations in The Netherlands that spanned 1940 to 2008, and 16S rRNA gene and 18 ARG abundances from different major antibiotic classes were quantified. Results show that ARG from all classes of antibiotics tested have significantly increased since 1940, but especially within the tetracyclines, with some individual ARG being >15 times more abundant now than in the 1970s. This is noteworthy because waste management procedures have broadly improved and stricter rules on nontherapeutic antibiotic use in agriculture are being promulgated. Although these data are local to The Netherlands, they suggest basal environmental levels of ARG still might be increasing, which has implications to similar locations around the world.

Journal ArticleDOI
TL;DR: In this article, the adsorption equilibrium selectivity was calculated from the ratio of Henry's constants, and the adsorbent selection parameter for pressure swing adaption was determined gravimetrically at 298 K and elevated pressures (14 bar for CO2 and 100 bar for CH4).
Abstract: Adsorption equilibrium and kinetics of CO2, CH4, N2O, and N2 on two newly discovered adsorbents, metal-organic frameworks MOF-5 and MOF-177 and one traditional adsorbent, zeolite 5A were determined to assess their efficacy for CO2, CH4, and N2O removal from air and separation of CO2 from CH4 in pressure swing adsorption processes. Adsorption equilibrium and kinetics data for CO2, CH4, N2O, and N2 on all three adsorbents were measured volumetrically at 298K and gas pressures up to 800 Torr. Adsorption equilibrium capacities of CO2 and CH4 on all three adsorbents were determined gravimetrically at 298 K and elevated pressures (14 bar for CO2 and 100 bar for CH4). The Henry’s law and Langmuir adsorption equilibrium models were applied to correlate the adsorption isotherms, and a classical micropore diffusion model was used to analyze the adsorption kinetic data. The adsorption equilibrium selectivity was calculated from the ratio of Henry’s constants, and the adsorbent selection parameter for pressure swing ...

Journal ArticleDOI
TL;DR: In this article, the occurrence of antibiotics and antibiotic resistance genes (ARGs) was quantified in water and sediment samples collected from a 72 km stretch of the Haihe River, China.
Abstract: The occurrence of antibiotics and antibiotic resistance genes (ARGs) was quantified in water and sediment samples collected from a 72 km stretch of the Haihe River, China. Tetracycline resistance genes (tetW, tetQ, tetO, tetT, tetM, tetB, and tetS) were not detected by quantitative PCR in many samples. In contrast, sul1 and sul2 (coding for sulfonamide resistance) were present at relatively high concentrations in all (38) samples. The highest ARG concentrations detected were (7.8 ± 1.0) × 109 copies/g for sul1 and (1.7 ± 0.2) × 1011 copies/g for sul2, in sediment samples collected during the summer. The corresponding total bacterial concentration (quantified with a universal 16S-rDNA probe) was (3.3 ± 0.4) × 1012 cells/g. Sul1 and sul2 concentrations in sediments were 120−2000 times higher than that in water, indicating that sediments are an important ARG reservoir in the Haihe River. Statistical analysis indicated a positive correlation between the relative abundance of these ARGs (i.e., sul1/16S-rDNA an...

Journal ArticleDOI
TL;DR: The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used.
Abstract: Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the prod...

Journal ArticleDOI
TL;DR: Pt/WO3 photocatalyst that oxidizes various substrates under visible light with a sufficient photostability can be applied for solar water treatment.
Abstract: This study aims to understand the visible light photocatalytic activities of platinized WO3 (Pt/WO3) on the degradation of aquatic pollutants and the role of main photooxidants. The presence of Pt on WO3 is known to facilitate the multielectron reduction of O2, which enables O2 to serve as an electron acceptor despite the insufficient reduction potential of the conduction band electrons (in WO3) for the one-electron reduction of O2. The concurrent oxidative reactions occurring on WO3 were markedly enhanced in the presence of Pt and accompanied the production of OH radicals under visible light, which was confirmed by both a fluorescence method (using a chemical trap) and a spin trap method. The generation of OH radicals mainly comes from the reductive decomposition of H2O2 that is produced in situ from the reduction of O2 on Pt/WO3. The rate of in situ production of H2O2 under visible light was significantly faster with Pt/WO3 than WO3. Six substrates that were tested for the visible light (λ > 420 nm) ind...

Journal ArticleDOI
TL;DR: Tungstation was beneficial for the formation of Ce(3+), which would influence the active sites of the catalyst and further change the mechanisms of SCR reaction, resulting in the better activity of CeO (2)-WO(3)/TiO(2) compared to that of CeCe(2)/Ti O(2).
Abstract: CeO(2)/TiO(2) and CeO(2)-WO(3)/TiO(2) catalysts prepared by impregnation method assisted with ultrasonic energy were investigated on the selective catalytic reduction (SCR) of NO(x) (NO and NO(2)) by NH(3). The catalytic activity of 10% CeO(2)/TiO(2) (CeTi) was greatly enhanced by the addition of 6% WO(3) in the broad temperature range of 200-500 °C, the promotion mechanism was proposed on basis of the results of in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH(3) was introduced into both catalysts preadsorbed with NO + O(2), SCR would not proceed except for the reaction between NO(2) and ammonia. For CeO(2)/TiO(2) catalysts, coordinated NH(3) linked to Lewis acid sites were the main adsorbed ammonia species. When NO + O(2) was introduced, all the ammonia species consumed rapidly, indicating that these species could react with NO(x) effectively. Two different reaction routes, L-H mechanism at low temperature ( 200 °C), were presented for SCR reaction over CeO(2)/TiO(2) catalyst. For CeO(2)-WO(3)/TiO(2) catalysts, the Lewis acid sites on Ce(4+) state could be converted to Bronsted acid sites due to the unsaturated coordination of Ce(n+) and W(n+) ions. When NO + O(2) was introduced, the reaction proceeded more quickly than that on CeO(2)/TiO(2). The reaction route mainly followed E-R mechanism in the temperature range investigated (150-350 °C) over CeO(2)-WO(3)/TiO(2) catalysts. Tungstation was beneficial for the formation of Ce(3+), which would influence the active sites of the catalyst and further change the mechanisms of SCR reaction. In this way, the cooperation of tungstation and the presence of Ce(3+) state resulted in the better activity of CeO(2)-WO(3)/TiO(2) compared to that of CeO(2)/TiO(2).

Journal ArticleDOI
TL;DR: A model was developed that describes the reverse permeation of draw solution across an asymmetric membrane in forward osmosis operation and demonstrates that the reverse flux selectivity, the ratio of the forward water flux to the reverse solute flux, is a key parameter in the design of osmotically driven membrane processes.
Abstract: Osmotically driven membrane processes are an emerging set of technologies that show promise in water and wastewater treatment, desalination, and power generation. The effective operation of these systems requires that the reverse flux of draw solute from the draw solution into the feed solution be minimized. A model was developed that describes the reverse permeation of draw solution across an asymmetric membrane in forward osmosis operation. Experiments were carried out to validate the model predictions with a highly soluble salt (NaCl) as a draw solution and a cellulose acetate membrane designed for forward osmosis. Using independently determined membrane transport coefficients, strong agreement between the model predictions and experimental results was observed. Further analysis shows that the reverse flux selectivity, the ratio of the forward water flux to the reverse solute flux, is a key parameter in the design of osmotically driven membrane processes. The model predictions and experiments demonstra...

Journal ArticleDOI
TL;DR: Two types of normalization, background and edge-of-road, were applied to the observed concentrations, and differences between the normalization methods arose due to the likely bias inherent in background normalization.
Abstract: Despite increasing regulatory attention and literature linking roadside air pollution to health outcomes, studies on near roadway air quality have not yet been well synthesized. We employ data collected from 1978 as reported in 41 roadside monitoring studies, encompassing more than 700 air pollutant concentration measurements, published as of June 2008. Two types of normalization, background and edge-of-road, were applied to the observed concentrations. Local regression models were specified to the concentration-distance relationship and analysis of variance was used to determine the statistical significance of trends. Using an edge-of-road normalization, almost all pollutants decay to background by 115−570 m from the edge of road; using the more standard background normalization, almost all pollutants decay to background by 160−570 m from the edge of road. Differences between the normalization methods arose due to the likely bias inherent in background normalization, since some reported background values...

Journal ArticleDOI
TL;DR: The Anthropocene, following the lost world of the Holocene, holds challenges for both science and society as mentioned in this paper, and the challenges of the Anthropocene can be summarized as follows:
Abstract: The Anthropocene, following the lost world of the Holocene, holds challenges for both science and society.

Journal ArticleDOI
TL;DR: Tapping the lucrative Marcellus Shale natural gas deposits may have a host of environmental concerns, according to a report by the USGS.
Abstract: Tapping the lucrative Marcellus Shale natural gas deposits may have a host of environmental concerns.

Journal ArticleDOI
TL;DR: In an effort to reduce future occurrences of similar problems, algorithms for correcting and calibrating EEMs are described in detail, and MATLAB scripts for implementing the study's protocol are provided, and this approach will serve to increase the intercomparability of DOM fluorescence studies.
Abstract: The fluorescent properties of dissolved organic matter (DOM) are often studied in order to infer DOM characteristics in aquatic environments, including source, quantity, composition, and behavior. While a potentially powerful technique, a single widely implemented standard method for correcting and presenting fluorescence measurements is lacking, leading to difficulties when comparing data collected by different research groups. This paper reports on a large-scale interlaboratory comparison in which natural samples and well-characterized fluorophores were analyzed in 20 laboratories in the U.S., Europe, and Australia. Shortcomings were evident in several areas, including data quality-assurance, the accuracy of spectral correction factors used to correct EEMs, and the treatment of optically dense samples. Data corrected by participants according to individual laboratory procedures were more variable than when corrected under a standard protocol. Wavelength dependency in measurement precision and accuracy were observed within and between instruments, even in corrected data. In an effort to reduce future occurrences of similar problems, algorithms for correcting and calibrating EEMs are described in detail, and MATLAB scripts for implementing the study's protocol are provided. Combined with the recent expansion of spectral fluorescence standards, this approach will serve to increase the intercomparability of DOM fluorescence studies.

Journal ArticleDOI
TL;DR: This work provides a potential effective VLD photocatalyst to disinfect the bacterial cells, even to destruct the biofilm that can provide shelter and substratum for microorganisms and resist to disinfection.
Abstract: Urgent development of effective and low-cost disinfecting technologies is needed to address the problems caused by an outbreak of harmful microorganisms. In this work, we report an effective photocatalytic disinfection of E. coli K-12 by using a AgBr-Ag-Bi(2)WO(6) nanojunction system as a catalyst under visible light (lambda >or= 400 nm) irradiation. The visible-light-driven (VLD) AgBr-Ag-Bi(2)WO(6) nanojunction could completely inactivate 5 x 10(7) cfu mL(-1) E. coli K-12 within 15 min, which was superior to other VLD photocatalysts such as Bi(2)WO(6) superstructure, Ag-Bi(2)WO(6) and AgBr-Ag-TiO(2) composite. Moreover, the photochemical mechanism of bactericidal action for the AgBr-Ag-Bi(2)WO(6) nanojunction was investigated by using different scavengers. It was found that the diffusing hydroxyl radicals generated both by the oxidative pathway and the reductive pathway play an important role in the photocatalytic disinfection. Moreover, direct contact between the AgBr-Ag-Bi(2)WO(6) nanojunction and bacterial cells was not necessary for the photocatalytic disinfection of E. coli K-12. Finally, the photocatalytic destruction of the bacterial cells was directly observed by TEM images and further confirmed by the determination of potassium ion (K(+)) leakage from the killed bacteria. This work provides a potential effective VLD photocatalyst to disinfect the bacterial cells, even to destruct the biofilm that can provide shelter and substratum for microorganisms and resist to disinfection.

Journal ArticleDOI
TL;DR: This field-scale study provides for the first time nanoparticle-level information of the Ag(2)S present in sewage sludge products, and further suggests the role of wastewater treatment processes on transformation of Ag nanoparticles and ionic Ag potentially released from them.
Abstract: Nanosized silver sulfide (α-Ag2S) particles were identified in the final stage sewage sludge materials of a full-scale municipal wastewater treatment plant using analytical high-resolution transmission electron microscopy. The Ag2S nanocrystals are in the size range of 5−20 nm with ellipsoidal shape, and they form very small, loosely packed aggregates. Some of the Ag2S nanoparticles (NPs) have excess S on the surface of the sulfide minerals under S-rich environments, resulting in a ratio of Ag to S close to 1. Considering the current extensive production of Ag NPs and their widespread use in consumer products, it is likely that they are entering wastewater streams and the treatment facilities that process this water. This study suggests that in a reduced, S-rich environment, such as the sedimentation processes during wastewater treatment, nanosized silver sulfides are being formed. This field-scale study provides for the first time nanoparticle-level information of the Ag2S present in sewage sludge produc...

Journal ArticleDOI
TL;DR: A high photocatalytic BiPO(4) with a novel nonmetal oxy acid structure is synthesized by a hydrothermal method and the inductive effect of PO(4)(3-) helps the e(-)/h(+) separation, which plays an important role in its excellent photoc atalytic activity.
Abstract: A high photocatalytic BiPO4 with a novel nonmetal oxy acid structure is synthesized by a hydrothermal method. BiPO4 photocatalyst has an optical indirect band gap of 3.85 eV. In a comparison of BiPO4 with that of TiO2 (P25, Degussa), it is found that the photocatalytic activity of BiPO4 is twice that of TiO2 (P25, Degussa) for the degradation of methylene blue (MB) dye, while the BET surface of BiPO4 is just one tenth of that of P25. Both the high position of the valence band and the high separation efficiency of electron−hole pairs result in the high photocatalytic activity. The inductive effect of PO43− helps the e−/h+ separation, which plays an important role in its excellent photocatalytic activity. It may extend to the synthesis of other inorganic nonmetal salts of oxy photocatalysts with suitable band gap and high activity for the environmental purification of organic pollutants in aqueous solution.