scispace - formally typeset
Search or ask a question

Showing papers in "Hydrobiologia in 2006"


Book ChapterDOI
TL;DR: This document suggests a normative methodology for the development and application of Multimetric Indices as a tool with which to evaluate the ecological status of running waters.
Abstract: The requirements of the European Water Framework Directive (WFD), aimed at an integrative assessment methodology for evaluating the ecological status of water bodies are frequently being achieved through multimetric techniques, ie by combining several indices, which address different stressors or different components of the biocoenosis This document suggests a normative methodology for the development and application of Multimetric Indices as a tool with which to evaluate the ecological status of running waters The methodology has been derived from and tested on a European scale within the framework of the AQEM and STAR research projects, and projects on the implementation of the WFD in Austria and Germany We suggest a procedure for the development of Multimetric Indices, which is composed of the following steps: (1) selection of the most suitable form of a Multimetric Index; (2) metric selection, broken down into metric calculation, exclusion of numerically unsuitable metrics, definition of a stressor gradient, correlation of stressor gradients and metrics, selection of candidate metrics, selection of core metrics, distribution of metrics within the metric types, definition of upper and lower anchors and scaling; (3) generation of a Multimetric Index (general or stressor-specific approach); (4) setting class boundaries; (5) interpretation of results Each step is described by examples

338 citations


Journal ArticleDOI
TL;DR: In this article, an assemblage index, Q, was developed to assess ecological status of different lake types established by the Water Framework Directive (WFD), since 5 ≥ Q ≥ 0, the developed index can provide 5-grade qualification required by WFD.
Abstract: On basis of recent developments in phytoplankton ecology an assemblage index, Q, was developed to assess ecological status of different lake types established by the Water Framework Directive (WFD). Since 5 ≥ Q ≥ 0, the developed index can provide 5-grade qualification required by WFD. Case studies from very different lake types support the usefulness of the developed index. Straights and weaknesses of the Q index for monitoring purposes are discussed. Without arguing for the superiority of the assemblage index in comparison with any other measures of ecological status of lakes, we aim to open a discussion about its possible applications.

313 citations


Journal ArticleDOI
TL;DR: This paper provided a general overview of the particular characteristics of mountain weather and climate, highlighting some of the unique atmospheric features that are associated with regions of complex topography, and focused upon characteristics of climate and climatic change in the European Alps.
Abstract: Meteorological and climatic processes in mountain regions play a key role in many environmental systems, in particular the quantity and quality of water that influences both aquatic ecosystems and economic systems often far beyond the boundaries of the mountains themselves. This paper will provide a general overview of some of the particular characteristics of mountain weather and climate, to highlight some of the unique atmospheric features that are associated with regions of complex topography. The second part of the paper will focus upon characteristics of climate and climatic change in the European Alps, a region with a wealth of high quality data that allows an assessment on how climate and dependent environmental systems have evolved in the course of the 20th century and how alpine climate may undergo further changes to “global warming” in the 21st century, as the atmosphere responds to increasing levels of greenhouse gases that are expected in coming decades.

312 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed contemporary topics associated with water quality of ephemeral streams receiving effluent flows and recommended several water quality research priorities for effluentdominated water bodies.
Abstract: In arid and semi-arid regions of the southwestern United States and other parts of the world, flows of historically ephemeral streams are now perennially dominated by municipal and/or industrial effluent discharges, particularly in urbanized watersheds. Because effluent-dominated and dependent water bodies have previously received limited scientific study, we reviewed select contemporary topics associated with water quality of ephemeral streams receiving effluent flows. Our findings indicate that these ecosystems present numerous challenges to aquatic scientists and water resources managers, including: 1) appropriate ecosystems or upstream conditions used reference sites in biomonitoring are difficult to locate or do not exist; 2) water quality criteria, particularly for metals, are dramatically influenced by unique site-specific stream and land use conditions; 3) effluent-dominated streams represent worse-case scenarios for evaluating and predicting aquatic responses to emerging contaminants (e.g., pharmaceuticals and personal care products); 4) low-flow and drought conditions often preclude effective biomonitoring and water quality interpretation, or skew ambient assessment results; 5) chemical-physical water quality parameters (e.g., dissolved oxygen, conductivity, temperature) are dramatically altered by effluent and stormwater characteristics; and 6) beneficial reuse of reclaimed effluent waters potentially conflict with sustainability of ecological integrity. Subsequently, we recommend several water quality research priorities for effluentdominated water bodies.

305 citations


Journal ArticleDOI
TL;DR: In this article, the authors use the use of intertidal species as indicators of climate change and propose a method to identify changes in the biogeographical range and abundance of these species.
Abstract: Since the 1990s there has been a period of rapid climate warming in Europe. Long-term broad scale datasets coupled with time series at specific locations for rocky intertidal species dating back to the 1950s have been collected in Britain and Ireland. Resurveys of the original locations in 2001–2003 have been undertaken to identify changes in the biogeographical range and abundance of these species. The results show that some ‘southern’ species including Osilinus lineatus da Costa and Gibbula umbilicalis da Costa have undergone north and north-eastern range extensions. Populations have increased in abundance and adult size has decreased since the previous surveys were conducted. These changes have been synchronous throughout Britain, strongly suggesting that climate is responsible. The use of intertidal species as indicators of climate change is proposed.

277 citations


Journal ArticleDOI
TL;DR: It is observed that practically all macroinvertebrates fed upon fine detritus which indicates the importance of this food resource in neotropical streams and the affinity of taxa to each FFG using fuzzy codes is transcribed.
Abstract: Feeding strategies are typical traits reflecting the adaptation of species to environmental conditions. This concept is currently developed in some water quality systems (e.g. Index of Trophic completeness) and the structure of functional feeding groups (FFGs) could form part of a unified measure across communities differing in taxonomic composition. However, in South America, information about the FFG classification of invertebrates in streams is almost absent and existing studies using FFG structure follows classification from North America. But even taxonomically related species may have different diets in tropical and temperate areas and therefore, studies about FFG structure in neotropics could be biased. For this reason, we determined diet composition, trophic level and FFGs, using gut contents analysis and mouthpart observations of 49 macroinvertebrate taxa (mostly at genus level) from neotropical streams. We observed that practically all macroinvertebrates fed upon fine detritus which indicates the importance of this food resource in neotropical streams. As the assignment to a single FFG does not accurately reflect the functional profile of taxa, we transcribed the affinity of taxa to each FFG using fuzzy codes. Finally, we published the coding of diet composition and FFG of the taxa examined, which could be used in future community analyses of lotic ecosystems in the Neotropical zone.

276 citations


Journal ArticleDOI
TL;DR: In this article, the response of a phytoplankton community to combined incremental changes in these drivers was analysed, in order to elucidate the resulting ecological changes, and the authors predicted that cyanobacteria have the potential to dominate the community, with clear consequences for water quality, and that this dominance was at its greatest when high water temperatures were combined with high nutrient loads.
Abstract: Freshwater lakes are biologically sensitive to changes in the surrounding environment and the impacts that such changes have on their water quality are of considerable ecological, recreational and economic importance. In this study the phytoplankton community model, PROTECH, was used to experiment with the effects of elevated temperatures and increased nutrient load on phytoplankton succession and productivity. The response of a phytoplankton community to combined incremental changes in these drivers was analysed, in order to elucidate the resulting ecological changes. Annual mean phytoplankton biomass increased with increases in temperature and nutrient loading, although the latter had the larger effect. The phenology of the dominant phytoplankton taxa changed with increasing water temperature; the three spring blooming species all peaked earlier in the year. The simulated summer bloom of Anabaena became earlier in the year and the Chlorella bloom later. The increased phytoplankton biomass was largely dominated by the cyanobacterium Anabaena, which was especially prevalent during the summer bloom. This resulted in a progressive loss of phytoplankton biodiversity with increasing water temperature and nutrient supply. Model experimentation showed that whilst both factors greatly affected the community, the changes to nutrient loading generally had the greater effect and that at low nutrient levels the effect of water temperature change was reduced considerably. Finally, the model predicted that cyanobacteria have the potential to dominate the phytoplankton community, with clear consequences for water quality, and that this dominance was at its greatest when high water temperatures were combined with high nutrient loads.

261 citations


Journal ArticleDOI
TL;DR: The main aim of the present review is to synthesise the present level of knowledge on the hydrobiology of springs in the Alps and propose to use the zoobenthos, especially water mites, for an evaluation of the biological integrity of springs, whilst autotrophs, and in particular diatoms, can provide excellent indicators of eutrophication, acidification and ionic strength.
Abstract: The main aim of the present review is to synthesise the present level of knowledge on the hydrobiology of springs in the Alps. Springs are usually small, but complex and taxa rich. They have a mosaic structure, a high degree of individuality and an azonal character, due to the peculiar physicochemical stability. Springs are ecotones linking an aquifer to the uppermost section of a surface running water system. Due to adaptations, of which stenothermy is the most frequent, representatives of many groups of plants and animals have in springs their exclusive (crenobionts) or favourite (crenophiles) habitat. This leads to a peculiar longitudinal distribution of organisms. In spite of this complexity, springs (in particular high elevation springs of the Alps) have received much less attention than other types of inland waters. They are endangered habitats, being menaced by a series of direct impacts (primarily water abstractions) and indirect impacts. The classical Steinmann–Thienemann ecomorphological types are still used with differences in the physical and chemical characteristics and in the biota. In the Alps rheocrene springs (where current velocity is one of the most relevant factors and the importance of the fringing semi-aquatic habitats is reduced) are the most frequent. However, in nature, most springs are transition types among the three traditional ones and these can now be assessed thanks to procedures considering mainly the substrate particle size. The physicochemistry of springs is characterised by limited seasonal fluctuations and determined by the characteristics of the aquifer and by indirect (especially airborne contaminants) and direct impacts. Many groups of organisms are well represented and include indicators of the trophic and acid–base status, of hydrogeology, hydrological stability and biological integrity. The groups with the highest proportions of specialised taxa are mosses, water mites, dipterans, hydrobioid snails and caddisflies. Attempts are being made to add to the traditional spring types hydrochemistry and vegetation and to the regional faunistic types, diatom-based types, to combine different approaches and to consider also functional ones, such as the distinction between POM and mosses’ springs. Given the high proportion of spring-specific taxa, we propose to use the zoobenthos, especially water mites, for an evaluation of the biological integrity of springs, whilst autotrophs, and in particular diatoms, which are the most widespread and taxa-rich group, can provide excellent indicators of eutrophication, acidification and ionic strength. This would require the calibration of the most promising diatom-based procedures to the spring environment and improvement of the knowledge on the taxonomy and distribution of key zoobenthos groups in the Alps. Other areas where further research is required are the definition of integrated spring-types, the potential for recovery of autotrophs in restored springs, functional aspects, the applicability of paleolimnological techniques to springs and the link between impacts on the drainage basin and spring environmental quality. Only once the importance of springs can be understood and effective conservation measures are undertaken, will it be possible to use these peculiar environments characterised by stability and by integration in time and space of direct and indirect impacts as ideal study sites for long-term ecological research.

246 citations


Journal ArticleDOI
TL;DR: For example, it is now clear that stratification and light penetration, not nutrient availability, are the triggers for blooms in the impounded rivers of southeastern Australia, although nutrient exhaustion limits the biomass of blooms.
Abstract: Australian science has made rapid advances in the last decade in understanding eutrophication processes in inland waters and estuaries. The freshwater research on which these advances are based was triggered by well-publicised blooms of cyanobacteria during the 1980s and early 1990s, particularly a 1000 km long bloom on the Darling River. In estuaries the study which greatly enhanced our understanding but simultaneously served to stimulate further research into estuarine eutrophication, the Port Phillip Bay Study, was initially designed to address perceived problems of toxicants in the Bay but provided profound insights into drivers for, and ecosystem responses to, eutrophication. Subsequent estuarine research has largely been stimulated by management questions arising from Australia’s increasing coastal development for residential purposes. The research has shown that some of the beliefs extant at the time of the blooms were incorrect. For example, it is now clear that stratification and light penetration, not nutrient availability, are the triggers for blooms in the impounded rivers of southeastern Australia, although nutrient exhaustion limits the biomass of blooms. Again, nitrogen seems to play as important a role as phosphorus does in controlling the biomass of these freshwater blooms. The research has also shown that aspects of eutrophication, such as nutrient transport, are dominated by different processes in different parts of Australia. Many of the biophysical processes involved in eutrophication have now been quantified sufficiently for models to be developed of such processes as sediment-nutrient release, stratification, turbidity and algal growth in both freshwater and estuarine systems. In some cases the models are reliable enough for the knowledge gained in particular waterbodies to be applied elsewhere. Thus, there is now a firm scientific foundation for managers to rely upon when managing algal blooms. Whilst these findings have already been presented to managers and communities throughout Australia, there is still a considerable way to go before they are absorbed into their modus operandi.

224 citations


Journal ArticleDOI
TL;DR: In 2003 and 2004, four cruises were undertaken in three zones in the Yangtze River Estuary and in the adjacent sea to investigate nitrate (NO3-N), ammonium (NH4N), nitrite (NO2-N) and soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM) as discussed by the authors.
Abstract: Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3-N+NH4-N+NO2-N), SRP and DRSi were 131.6, 1.2 and 155.6 mu M, respectively. The maximum Chl a concentration was 19.5 mg m(-3) in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 mu M and from 0.4 to 0.95 mu M, respectively. From 1963 to 2004, N:P ratios also increased from 30-40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m(-3), nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l(-1), much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.

213 citations


Journal ArticleDOI
TL;DR: A context for the STAR research programme is provided through a review of the requirements of the directive and the Common Implementation Strategy responsible for guiding its implementation.
Abstract: STAR is a European Commission Framework V project (EVK1-CT-2001-00089). The project aim is to provide practical advice and solutions with regard to many of the issues associated with the Water Framework Directive. This paper provides a context for the STAR research programme through a review of the requirements of the directive and the Common Implementation Strategy responsible for guiding its implementation. The scientific and strategic objectives of STAR are set out in the form of a series of research questions and the reader is referred to the papers in this volume that address those objectives, which include: (a) Which methods or biological quality elements are best able to indicate certain stressors? (b) Which method can be used on which scale? (c) Which method is suited for early and late warnings? (d) How are different assessment methods affected by errors and uncertainty? (e) How can data from different assessment methods be intercalibrated? (f) How can the cost-effectiveness of field and laboratory protocols be optimised? (g) How can boundaries of the five classes of Ecological Status be best set? (h) What contribution can STAR make to the development of European standards? The methodological approaches adopted to meet these objectives are described. These include the selection of the 22 stream-types and 263 sites sampled in 11 countries, the sampling protocols used to sample and survey phytobenthos, macrophytes, macroinvertebrates, fish and hydromorphology, the quality control and uncertainty analyses that were applied, including training, replicate sampling and audit of performance, the development of bespoke software and the project outputs. This paper provides the detailed background information to be referred to in conjunction with most of the other papers in this volume. These papers are divided into seven sections: (1) typology, (2) organism groups, (3) macrophytes and diatoms, (4) hydromorphology, (5) tools for assessing European streams with macroinvertebrates, (6) intercalibration and comparison and (7) errors and uncertainty. The principal findings of the papers in each section and their relevance to the Water Framework Directive are synthesised in short summary papers at the beginning of each section. Additional outputs, including all sampling and laboratory protocols and project deliverables, together with a range of freely downloadable software are available from the project website at www.eu_star.at.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed spatial and seasonal characteristics of harmful algal blooms (HABs) in the southern Yellow Sea and East China Sea along Chinese coast from 1933 to 2004.
Abstract: The occurrences of harmful algal blooms (HABs), in terms of frequency and area in the Chinese coastal waters, have been increasing since 1980s and caused considerable economic losses. In the present study, we have analyzed spatial and seasonal characteristics of HAB events in the southern Yellow Sea and East China Sea along Chinese coast from 1933 to 2004. With a total 435 HAB records, the most frequent HAB occurrence area (FHA) is off the Yangtze River mouth and another two FHA areas are located south of the Yangtze River estuary along about isobaths of 30–60 m coastal water in the East China Sea. The time of HAB occurrence shifted during our study period: from autumn (August–October) before 1980s to July–August in 1980s, during May–July in 1990s, and May–June for the period of 2000–2004. Causative species were found to be different: Noctiluca scintillans and Skeletonema costatum were dominant causative species prior to 2000; and Prorocentrum donghaiense Lu was dominant from 2000 to 2004 and also caused large blooms in May. Trichodesmium sp. caused many HABs in autumn (August–October) prior to 1980s with only one HAB between 1980 and 2004. The changes of the dominant HAB species may have affected the timings of HAB occurrence, as well as the increasing HAB-affected areas in recent years.

Journal ArticleDOI
TL;DR: In this article, the authors tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia.
Abstract: We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.

Journal ArticleDOI
TL;DR: In this article, a new index for assessing water trophy and organic pollution is presented, which is based on only true aquatic macrophytes, being calculated on species score, coefficient of ecological amplitude and degree of cover.
Abstract: The paper presents a new index for assessing water trophy and organic pollution. It is based on only true aquatic macrophytes – being calculated on species score, coefficient of ecological amplitude and degree of cover. The method was tested in an acidic lowland river and an alkaline mountain river, and is shown to be validated by bio-indication scales based on macrophyte communities. The practical interest is discussed regarding the Water Framework Directive.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates.
Abstract: In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.

Book ChapterDOI
TL;DR: The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers, and can be considered ecosystem engineers determining the functional diversity and food web structure of the Rhine by either bottom-up or top-down regulation.
Abstract: The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers. Canalization of the Rhine resulted in a reduction of heterogeneity to two main biotopes: sandy streambeds and riverbanks consisting of groyne stones. Both biotopes are heavily subjected to biological invasions, affecting the rivers food web structure. The Ponto-Caspian amphipods, Chelicorophium curvispinum and Dikerogammarus villosus, have exerted the highest impact on this food web. The filterfeeding C. curvispinum dominated the Rhine food web on the stones in 1998, swamping the stone substrata with mud. However, in 2001 it decreased in numbers, most likely due to top-down regulation caused by increased parasitic and predatory pressure of other more recently invaded Ponto-Caspian species. D. villosus showed a fast population increase after its invasion and particularly influenced the macroinvertebrate community on the stones by predaceous omnivory. This species seemed to have maintained its predatory level after its population established. Effects of these mass invaders on the macroinvertebrate community of sandy streambeds in the Rhine are unclear. Here, low densities of macroinvertebrates were observed with the Asiatic clam, Corbicula fluminea, as most abundant species. Stable isotope values of food webs from the stones and sand in 2001 were similar. Aquatic macrophytes are nearly absent and the food web is fuelled by phytoplankton and particulate organic matter, originating from riparian vegetation as indicated by similar δ13C values. Omnivores, filter-, deposit-, and detritus-feeders are the primary and secondary macroinvertebrate consumers and function as keystone species in transferring energy to higher trophic levels. Invaders comprise 90% of the macroinvertebrate numbers, and can be considered ecosystem engineers determining the functional diversity and food web structure of the Rhine by either bottom-up or top-down regulation.

Journal ArticleDOI
TL;DR: In this article, the authors examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario and found no relationship between the macroinvegetation and land cover at the whole μ-basin scale.
Abstract: We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.

Book ChapterDOI
TL;DR: The discriminatory power and error associated with individual metrics varied markedly, indicating that caution should be exercised when selecting the ‘best’ organism group or metric to monitor stress.
Abstract: A number of biological approaches are commonly used to assess the ecological integrity of stream ecosystems Recently, it is becoming increasingly common to use multiple organism groups in bioassessment Advocates of the multiple organism approach argue that the use of different organism groups should strengthen inference-based models and ultimately result in lower assessment error, while opponents argue that organism groups often respond similarly to stress implying a high degree of redundancy Using fish, macroinvertebrate, macrophyte and benthic diatom data, site-specific parameters (eg, water chemistry and substratum) and catchment variables from European mountain (n = 77) and lowland (n = 85) streams we evaluated the discriminatory power and uncertainty associated with the use of a number of biological metrics commonly used in stream assessment The primary environmental gradient for both streams types was land use and nutrient enrichment Secondary and tertiary gradients were related to habitat quality or alterations in hydromorphology Benthic diatom and macroinvertebrate metrics showed high discriminatory power (R 2 values often >050) and low error (<30%) with the primary (nutrient) gradient, while both fish and macrophyte metrics performed relatively poorly Conversely, both fish and macrophyte metrics showed higher response (high coefficients of determination) than either benthic diatom or macroinvertebrate metrics to the second (eg, alteration in habitat/hydromorphology) gradient However, the discriminatory power and error associated with individual metrics varied markedly, indicating that caution should be exercised when selecting the ‘best’ organism group or metric to monitor stress

Journal ArticleDOI
TL;DR: The results showed that protozoan flagellate Ochromonas sp.
Abstract: In the experiment we investigated the effect of grazing by different sorts of zooplankton on the induction of defensive morphology in the cyanobacterium Microcystis aeruginosa. The results showed that protozoan flagellate Ochromonas sp. grazing could induce colony formation in M. aeruginosa, whereas M. aeruginosa populations in the control and the grazing treatments of copepod Eudiaptomus graciloides, cladoceran Daphnia magna, and rotifer Brachionus calyciflorus were still strongly dominated by unicells and paired cells and no colony forma occurred. In the protozoan grazing treatment, the proportion of unicells reduced from 83.2% to 15.7%, while the proportion of cells in colonial form increased from 0% to 68.7% of the population at the end of the experiment. The occurrence of a majority of colonial M. aeruginosa being in the treatment with flagellates, indicated that flagellate grazing on solitary cells could induce colony formation in M. aeruginosa. The colonies could effectively deter flagellate from further grazing and thus increase the survival of M. aeruginosa. The colony formation in M. aeruginosa may be considered as an inducible defense against flagellate grazing under the conditions that toxin cannot deter flagellate from grazing effectively.

Journal ArticleDOI
TL;DR: In this article, the authors present a 4-year dataset (2001-2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape.
Abstract: We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.

Book ChapterDOI
TL;DR: In this article, the authors investigated suspended sediment scour using naturally colonized benthic algal communities exposed to realistic velocities and suspended sediment concentrations in a laboratory flowtank.
Abstract: Of the mechanisms that remove benthic algae during flood disturbances, relatively little is known about the effects of sediment scour. We investigated suspended sediment scour using naturally colonized benthic algal communities exposed to realistic velocities and suspended sediment concentrations in a laboratory flowtank. Increased velocity alone removed benthic algal biomass, and high suspended sediment concentrations further increased algal removal. Efficacy of biomass removal by velocity and suspended sediments was community-specific; communities with a tightly adherent cohesive mat physiognomy were resistant to removal, despite taxonomic similarity to easily disturbed communities. In addition, some taxa were more susceptible to removal by disturbance than others. The duration of scour and physical refugia on the substratum also influenced algal biomass removal. Our results indicate that suspended sediment scour may be an important mechanism for algal removal during flood events, and some variability in biomass removal among flood events may be the result of differences in suspended sediment load.

Journal ArticleDOI
TL;DR: In this article, the authors used data from previous and ongoing projects to investigate geographical variability in wet deposition chemistry over the Alps; assess temporal trends of the major chemical variables in response to changes in the atmospheric emission of pollutants; and discuss the potential relationship between the status of atmospheric deposition and its effects on forest ecosystems in the alpine and subalpine area, focusing particularly on nitrogen input.
Abstract: Several research programs monitoring atmospheric deposition have been launched in the Alpine countries in the last few decades. This paper uses data from previous and ongoing projects to: (i) investigate geographical variability in wet deposition chemistry over the Alps; (ii) assess temporal trends of the major chemical variables in response to changes in the atmospheric emission of pollutants; (iii) discuss the potential relationship between the status of atmospheric deposition and its effects on forest ecosystems in the alpine and subalpine area, focusing particularly on nitrogen input. We also present results of studies performed at a local level on specific topics such as long-term changes in lead deposition and the role of occult deposition in total nitrogen input. The analysis performed here highlights the marked geographical variability of atmospheric deposition in the Alpine region. Apart from some evidence of geographically limited effects, due to local sources, no obvious gradients were identified in the major ion deposition. The highest ionic loads were recorded in areas in the foothills of the Alps, such as the pre-alpine area in North-Western Italy and the area of Canton Ticino, Switzerland. Trend analysis shows a widespread decrease in the acidity of precipitation in the last 15–20 years as a consequence of the reduced emission of S compounds. On the other hand, nitrate concentrations in rain have not changed so much, and ammonium has decreased significantly only at the Austrian sampling sites. The deposition of N is still well above the estimated critical loads of nutrient N at some forest sites in the alpine and subalpine areas, thus confirming the critical situation of both terrestrial and aquatic ecosystems regarding N inputs. Existing data highlights the importance of continuously monitoring atmospheric deposition chemistry in the Alpine area, taking account of acidifying elements, nutrients and other pollutants such as heavy metals and organic compounds. There is also a need for unifying sampling and analytical methods in order to obtain comparable data from the different regions of the Alps.

Journal ArticleDOI
TL;DR: In this article, the authors measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment and found that under a full range of annual flood durations (0-8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons.
Abstract: Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves

Journal ArticleDOI
TL;DR: In this paper, a trophic diatom index (TDI) developed for monitoring European rivers was applied to these tropical systems, and 54 specific and infraspecific diatom taxa representing 20 genera were identified for all sites with Achnanthes s.l. being the most common genera.
Abstract: Diatoms are frequently used as indicators of eutrophication in temperate systems, but little is known about their application to impacted African tropical systems. Five streams located within Gombe Stream National Park and five streams supporting human settlements draining into Lake Tanganyika, East Africa, were investigated for species composition, richness and diversity of epilithic algae. In addition, a trophic diatom index (TDI) developed for monitoring European rivers was applied to these tropical systems. 54 specific and infraspecific diatom taxa representing 20 genera were identified for all sites with Achnanthes s.l., Gomphonema and Navicula s.l. being the most common genera. Species richness varied between 10 and 21 in disturbed streams and 13 and 19 in undisturbed streams. Nutrients were significantly enriched in streams draining the deforested watersheds but indices of diversity and evenness (Shannon H, J and Simpson–Yule D, E) did not show any significant differences between streams in forested and deforested watersheds. Significant differences were observed between pooled data for the TDI between forested and deforested watersheds. Analysis of percent pollution tolerant diatom taxa indicates that organic pollution of streams in deforested watersheds may be contributing to eutrophication. This study shows that African diatoms, cosmopolitan or resembling well-known North American and European taxa, allows for trophic indices tailored to the autecological preferences of species to be applied to new regions, although intensive studies on these African taxa will lead to more accurate results. Measures of species-richness and diversity, historically used to describe the state of an ecosystem, may not be suitable to evaluate streams which are not grossly polluted.

Book ChapterDOI
TL;DR: In this article, the authors argue that a discursive shift is taking place in Dutch water policy, from "a battle against water" to "living with water" or "accommodating water".
Abstract: This paper argues that a discursive shift is taking place in Dutch water policy, from ‘a battle against water’ to ‘living with water’ or ‘accommodating water’. Yet we ask ourselves whether this shift is just an adaptation strategy of the existing elite group of water managers, who pay lip-service to new management approaches in order to maintain their vested interests, as some authors claim, or whether it implies ‘deep’ institutional change, e.g. in terms of the emergence of new water institutions, power relations and procedures. While investigating this question, we make use of the ‘policy arrangement approach’, which pays attention to institutional and discursive aspects of policy making alike. Our conclusion is that we are currently observing institutional changes beyond ‘policy talk’, particularly in terms of new legislation and procedures. However, it is too early to speak of ‘deep’ institutional change in Dutch water management, because the former water institutions are still maintaining their power positions, despite the availability of additional resources for policy and research as well as the emergence of several new modes of governance.

Journal ArticleDOI
TL;DR: The results indicated that the concentrations of ortho-phosphate, ammonium, total organic nitrogen, BOD5 and faecal coliforms characterized a pollution gradient along the river, where changes in the abundance or species composition were observed.
Abstract: The potential use of epilithic diatoms as indicators of organic pollution was evaluated in Gravatai River, RS, (latitude 29°45′–30°12′ S; longitude 50°27′–51°12′ W). The river suffers agricultural impacts in its upper course and urban and industrial organic pollution in its lower course. Epilithic diatoms were sampled eight times from September 2000 to August 2002, at six sites. Species were identified and densities and relative abundances of populations were determined. Simultaneously, physical, chemical and microbiological variables were measured (water temperature, conductivity, turbidity, pH, dissolved oxygen, biochemical oxygen demand (BOD5), chemical oxygen demand, ammonium, organic nitrogen, total nitrogen, ortho-phosphate, total phosphate, chloride and faecal coliforms). In order to interpret the environmental and biological variables, discriminant analysis and the TWINSPAN methods (Two-Way Indicator Species Analysis) were applied. The results indicated that the concentrations of ortho-phosphate, ammonium, total organic nitrogen, BOD5 and faecal coliforms characterized a pollution gradient along the river, where changes in the abundance or species composition were observed. Species were classified into three groups: Group A, including species more tolerant to heavy organic pollution and eutrophication, represented by Luticola goeppertiana, L. mutica, Eolimna subminuscula, Nitzschia palea and Sellaphora pupula; Group B, comprised of tolerant and widely distributed species such as Eunotia bilunaris, Frustulia crassinervia, F. saxonica, Navicula cryptocephala, N. cryptotenella, Nitzschia palea var. tenuirostris, Surirella angusta, Pinnularia microstauron and Ulnaria ulna and Group C, with less pollution tolerant species represented by Eunotia sp. and Gomphonema parvulum.

Journal ArticleDOI
TL;DR: In this article, the authors examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park.
Abstract: Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.

Journal ArticleDOI
TL;DR: The similarity of zooplankton communities in Wielkowiejskie lake was based on the characteristic architecture of particular macrophyte species, where the plant length was the strongest predictor.
Abstract: Research on the similarity of zooplankton in various stands of water vegetation, including rushes (Typha angustifolia), nymphaeids (Nymphaea alba) and submerged macrophytes (Charahispida, C. tomentosa, Myriophyllumverticillatum and Utricularia vulgaris) was carried out on the shallow Wielkowiejskie lake (Poland). The analysis of the similarity of the Rotifera community revealed the strongest relationship between the Myriophyllum and Chara tomentosa beds, with C. hispida attaching them. A second pair of habitats was represented by Typha and Nymphaea stands. Cladocerans revealed the greatest similarity between both zones of Chara. Additionally, two more pairs of habitats were distinguished – Typha and Nymphaea and also Utricularia and Myriophyllum. In most cases, the Shannon-Weaver values were high among macrophyte stations. Forward stepwise regression revealed that the length of Nymphaea stems was a single negative predictor determining the Cladocera densities. The water lily stand possessed the richest pelagic community of zooplankton and had the highest cladoceran diversity index. In accordance with CCA-ordination, out of the environmental variables, the macrophyte stem length and the concentration of Ptot were the strongest predictors in determining the distribution of particular species of the zooplankton community. Mainly pelagic species displayed preferences towards physical parameters of habitat, which is manifested in their greater affinity to a denser spatial structure of macrophyte substratum. The similarity of zooplankton communities in Wielkowiejskie lake was based on the characteristic architecture of particular macrophyte species, where the plant length was the strongest predictor. Moreover, the character of the zooplankton communities was also influenced by the concentrations of chlorophyll ‘a’ and the chemical variables, with the strongest impact of Ptot, of periphyton received from a particular macrophyte habitat and from water filling the spaces between plant stems.

Book ChapterDOI
TL;DR: There was a substantial increase in the number of organic substrates oxidized by diatoms grown in the dark compared to their light-grown counterparts, indicating that the transport systems for these molecules may be light activated.
Abstract: The heterotrophic utilization of organic substrates by diatoms is likely an important survival strategy when light levels are too low for photosynthesis. The objectives of this study were: (1) to determine if heterotrophic utilization of a large array of organic compounds by eight common freshwater benthic diatom taxa was light-dependent, and (2) to determine if organic substrate utilization patterns differed between darkgrown diatoms and bacteria as a possible means of reducing competition by niche separation. Eight lightand dark-grown diatom taxa and five bacterial species were incubated in 96-well Biolog® Microtiter plates with each well containing 1 of 95 different organic substrates. Oxidation rates of each organic substrate were measured through time. There was a substantial increase in the number of organic substrates oxidized by diatoms grown in the dark compared to their light-grown counterparts, indicating that the transport systems for these molecules may be light activated. Therefore, diatoms likely only utilize these metabolically expensive uptake mechanisms when they are necessary for survival, or when substrates are plentiful. A principal components analysis indicated discernible differences in the types of organic-C substrates utilized by dark-grown diatoms and bacteria. Although bacteria were able to oxidize a more diverse array of organic substrates including carboxylic acids and large polymers, diatoms appeared to more readily utilize the complex carbohydrates. By oxidizing different organic substrates than bacteria, heterotrophically metabolizing diatoms may be reducing direct competition and enhancing coexistence with bacteria.

Journal ArticleDOI
TL;DR: In this article, the role of mesotrophic Lake Prespa in the ongoing eutrophication of Lake Ohrid was investigated and it was found that 65% of the transported phosphorus is retained within the aquifer.
Abstract: Lake Prespa and Lake Ohrid, located in south-eastern Europe, are two lakes of extraordinary ecological value. Although the upstream Lake Prespa has no surface outflow, its waters reach the 160 m lower Lake Ohrid through underground hydraulic connections. Substantial conservation efforts concentrate on oligotrophic downstream Lake Ohrid, which is famous for its large number of endemic and relict species. In this paper, we present a system analytical approach to assess the role of the mesotrophic upstream Lake Prespa in the ongoing eutrophication of Lake Ohrid. Almost the entire outflow from Lake Prespa is found to flow into Lake Ohrid through karst channels. However, 65% of the transported phosphorus is retained within the aquifer. Thanks to this natural filter, Lake Prespa does not pose an immediate threat to Lake Ohrid. However, a potential future four-fold increase of the current phosphorus load from Lake Prespa would lead to a 20% increase (+0.9 mg P m−3) in the current phosphorus content of Lake Ohrid, which could jeopardize its fragile ecosystem. While being a potential future danger to Lake Ohrid, Lake Prespa itself is substantially endangered by water losses to irrigation, which have been shown to amplify its eutrophication.