scispace - formally typeset
Search or ask a question

Showing papers in "Hydrobiologia in 2011"


Journal ArticleDOI
TL;DR: The comparison of treatment efficiency of vegetated HF CWs and unplanted filters is not unanimous but most studies have shown that systems with plants achieve higher treatment efficiency.
Abstract: The presence of macrophytes is one of the most conspicuous features of wetlands and their presence distinguishes constructed wetlands from unplanted soil filters or lagoons The macrophytes growing in constructed wetlands have several properties in relation to the treatment process that make them an essential component of the design However, only several roles of macrophytes apply to constructed wetlands with horizontal subsurface flow (HF CWs) The plants used in HF CWs designed for wastewater treatment should therefore: (1) be tolerant of high organic and nutrient loadings, (2) have rich belowground organs (ie roots and rhizomes) in order to provide substrate for attached bacteria and oxygenation (even very limited) of areas adjacent to roots and rhizomes and (3) have high aboveground biomass for winter insulation in cold and temperate regions and for nutrient removal via harvesting The comparison of treatment efficiency of vegetated HF CWs and unplanted filters is not unanimous but most studies have shown that systems with plants achieve higher treatment efficiency The vegetation has mostly a positive effect, ie supports higher treatment efficiency, for organics and nutrients like nitrogen and phosphorus By far the most frequently used plant around the globe is Phragmites australis (Common reed) Species of the genera Typha (latifolia, angustifolia, domingensis, orientalis and glauca) and Scirpus (eg lacustris, validus, californicus and acutus) spp are other commonly used species In many countries, and especially in the tropics and subtropics, local plants including ornamental species are used for HF CWs

542 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankston without a very comprehensive and costly effort.
Abstract: With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.

309 citations


Journal ArticleDOI
TL;DR: In this paper, a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations.
Abstract: Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.

264 citations


Journal ArticleDOI
TL;DR: In this article, a methodology to assess emissions and emission reductions from peatland rewetting projects using vegetation as a proxy is presented, which includes mapping of vegetation types characterised by the presence and absence of species groups indicative for specific water level classes.
Abstract: Drained peatlands in temperate Europe are a globally important source of greenhouse gas (GHG) emissions. This article outlines a methodology to assess emissions and emission reductions from peatland rewetting projects using vegetation as a proxy. Vegetation seems well qualified for indicating GHG fluxes from peat soils as it reflects long-term water level, affects GHG emissions via assimilate supply and aerenchyma and allows fine-scaled mapping. The methodology includes mapping of vegetation types characterised by the presence and absence of species groups indicative for specific water level classes. GHG flux values are assigned to the vegetation types following a standardized protocol and using published emission values from plots with similar vegetation and water level in regions with similar climate and flora. Carbon sequestration in trees is accounted for by estimating the annual sequestration in tree biomass from forest inventory data. The method follows the criteria of the Voluntary Carbon Standard and is illustrated using the example of two Belarusian peatlands.

226 citations


Journal ArticleDOI
TL;DR: The categorization of inducible defences in phytoplankton in terms of the responsible induction mechanism provides guidance for future work, as hardly any of the available studies on marine or freshwater plankton have performed all the treatments that are required to pinpoint the actual cue(s) for induction.
Abstract: Many organisms have developed defences to avoid predation by species at higher trophic levels. The capability of primary producers to defend themselves against herbivores affects their own survival, can modulate the strength of trophic cascades and changes rates of competitive exclusion in aquatic communities. Algal species are highly flexible in their morphology, growth form, biochemical composition and production of toxic and deterrent compounds. Several of these variable traits in phytoplankton have been interpreted as defence mechanisms against grazing. Zooplankton feed with differing success on various phytoplankton species, depending primarily on size, shape, cell wall structure and the production of toxins and deterrents. Chemical cues associated with (i) mechanical damage, (ii) herbivore presence and (iii) grazing are the main factors triggering induced defences in both marine and freshwater phytoplankton, but most studies have failed to disentangle the exact mechanism(s) governing defence induction in any particular species. Induced defences in phytoplankton include changes in morphology (e.g. the formation of spines, colonies and thicker cell walls), biochemistry (such as production of toxins, repellents) and in life history characteristics (formation of cysts, reduced recruitment rate). Our categorization of inducible defences in terms of the responsible induction mechanism provides guidance for future work, as hardly any of the available studies on marine or freshwater plankton have performed all the treatments that are required to pinpoint the actual cue(s) for induction. We discuss the ecology of inducible defences in marine and freshwater phytoplankton with a special focus on the mechanisms of induction, the types of defences, their costs and benefits, and their consequences at the community level.

213 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the current state-of-the-art in discards research, with particular emphasis on the needs and challenges associated with the implementation of the Ecosystem Approach to Fisheries Management (EAFM) in European waters.
Abstract: It has been widely acknowledged that fishery discard practices constitute a purposeless waste of valuable living resources, which plays an important role in the depletion of marine populations. Furthermore, discarding may have a number of adverse ecological impacts in marine ecosystems, provoking changes in the overall structure of trophic webs and habitats, which in turn could pose risks for the sustainability of current fisheries. The present review aims to describe the current state-of-the-art in discards research, with particular emphasis on the needs and challenges associated with the implementation of the Ecosystem Approach to Fisheries Management (EAFM) in European waters. We briefly review the international and European policy contexts of discarding, how discard data are collected and incorporated into stock assessments, selectivity in fishing and the main consequences of discarding for ecosystem dynamics. We then review implementation issues related to reducing discards under the EAFM and the associated scientific challenges, and conclude with some comments on lessons learned and future directions.

183 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether the biological traits of diatoms in rivers (life-forms, size classes and ecological guilds) could be used to assess organic pollution and trophic level.
Abstract: The European Union’s Water Framework Directive has set a target of achieving good ecological status for all aquatic environments in Europe by 2015. In order to determine the quality of aquatic environments, biological indicators such as diatoms are often used. However, biotic diatom indices can be difficult and time consuming to use because of complexity of species determination. We investigated whether the biological traits of diatoms in rivers (life-forms, size classes and ecological guilds) could be used to assess organic pollution and trophic level. We worked on a data set comprising 315 diatom species, determined at 328 river stations of south-east France and a variety of parameters. The abundances of some biological traits differed significantly between the different organic pollution and trophic levels, particularly stalked diatoms, and the motile and low-profile guilds.

172 citations


Journal ArticleDOI
TL;DR: The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of small-sized zooplankton in warm lakes.
Abstract: The mean body size of limnetic cladocerans decreases from cold temperate to tropical regions, in both the northern and the southern hemisphere. This size shift has been attributed to both direct (e.g. physiological) or indirect (especially increased predation) impacts. To provide further information on the role of predation, we compiled results from several studies of subtropical Uruguayan lakes using three different approaches: (i) field observations from two lakes with contrasting fish abundance, Lakes Rivera and Rodo, (ii) fish exclusion experiments conducted in in-lake mesocosms in three lakes, and (iii) analyses of the Daphnia egg bank in the surface sediment of eighteen lakes. When fish predation pressure was low due to fish kills in Lake Rivera, large-bodied Daphnia appeared. In contrast, small-sized cladocerans were abundant in Lake Rodo, which exhibited a typical high abundance of fish. Likewise, relatively large cladocerans (e.g. Daphnia and Simocephalus) appeared in fishless mesocosms after only 2 weeks, most likely hatched from resting egg banks stored in the surface sediment, but their abundance declined again after fish stocking. Moreover, field studies showed that 9 out of 18 Uruguayan shallow lakes had resting eggs of Daphnia in their surface sediment despite that this genus was only recorded in three of the lakes in summer water samples, indicating that Daphnia might be able to build up populations at low risk of predation. Our results show that medium and large-sized zooplankton can occur in subtropical lakes when fish predation is removed. The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of small-sized zooplankton in warm lakes.

158 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the published data of carbon and nutrient exchange of mangrove forests with the coastal ocean at different spatial scales to assess whether the exchange is correlated with environmental parameters.
Abstract: Mangrove forests exchange materials with the coastal ocean through tidal inundation. In this study, we aim to provide an overview of the published data of carbon (C) and nutrient exchange of mangrove forests with the coastal ocean at different spatial scales to assess whether the exchange is correlated with environmental parameters. We collected data on C (dissolved and particulate organic C; DOC and POC) and nutrient exchange (dissolved and particulate nitrogen, N and phosphorus, P) and examined the role of latitude, temperature, precipitation, geomorphological setting, hydrology, dominant mangrove species and forest area in explaining the variability of the exchange. We identified that there are a range of methodologies used to determine material exchange of mangroves with the coastal zone, each methodology providing data on the exchange at different spatial scales. This variability of approaches has limited our understanding of the role of mangroves in the coastal zone. Regardless, we found that mangrove forests export C and nutrients to the coastal zone in the form of litter and POC. We found that precipitation is a major factor influencing the export of C in the form of litter; sites with low annual precipitation and high mean annual temperatures export more C as litter than sites with high precipitation and low temperature. Furthermore, export of POC is higher in zones with low mean annual minimum temperature. Identification of broad-scale trends in DOC and dissolved nutrients was more difficult, as the analysis was limited by scarcity of suitable studies and high variability in experimental approaches. However, tidal amplitude and the concentration of nutrients in the floodwater appears to be important in determining nutrient exchange. The strongest conclusion from our analysis is that mangrove forests are in general sources of C and nutrients in the form of litter and POC and that they are most likely to be exporting C subsidies in dry regions.

143 citations


Journal ArticleDOI
TL;DR: It is shown that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature, and diatoms emerge from the dataset as small contributors to the diet of copepods except in some very productive ecosystems.
Abstract: Here, we report insights from the compilation and analysis of data on marine calanoid copepod feeding rates in the ocean. Our study shows that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature. Although the maximal feeding rates of copepods that are observed in the field agree with the well-known 3/4 of body size scaling rule for animals, copepod feeding in the oceans is typically limited and departs from this rule. Ciliates and dinoflagellates appear to be highly relevant in the composition of copepod diets, and this represents an indirect increase in the flux of primary production that is likely to reach the upper trophic levels; this contribution is higher in the less productive systems and may help to explain accounts of proportionally higher standing stocks of copepods supported per unit of primary producer biomass in oligotrophic environments. Contrary to common belief, diatoms emerge from our dataset as small contributors to the diet of copepods, except in some very productive ecosystems. We have also evaluated the bias in the estimation of copepod grazing rates due to within-bottle trophic cascade effects caused by the removal of microheterotrophs by copepods. This release of microzooplankton grazing pressure accounts for a relevant, but moderate, increase in copepod grazing estimates (ca. 20–30%); this bias has an effect on both the carbon flux budgets through copepods and on our view of their diet composition. However, caution is recommended against the indiscriminate use of corrections because they may turn out to be overestimates of the bias. We advise that both uncorrected and corrected grazing rates should be provided in future studies, as they probably correspond to the lower and upper boundaries of the true grazing rates.

121 citations


Journal ArticleDOI
TL;DR: In this paper, two experiments have been conducted in northeast Italy, in a Natural Park with resurgent water, to test two installation designs (two barriers composed of two lines of elements, 2 × 2 and two composed of three line of elements; 2 × 3 and 3 × 3 respectively).
Abstract: Floating treatment wetlands are innovative systems and their processes are still scarcely known within the traditional methods of phytodepuration. To gain initial information on their performance and potential in removing pollutants, two experiments have been conducted in northeast Italy, in a Natural Park with resurgent water. Barriers formed by a new patented floating element were tested in real climatic and water flow conditions. One experiment was conducted in a channel receiving aquaculture effluents, while the other was set in two cleaner channels to test two installation designs (two barriers composed of two lines of elements—2 × 2 design and two composed of three lines of elements—2 × 3 design). Different macrophyte species were used (Phragmites australis, Carex elata, Juncus effusus, Typha latifolia, Chrysopogon zizanioides, Sparganium erectum, and Dactylis glomerata). The floating systems were easily installed and required few maintenance operations. Native plants grew successfully, developing roots 90–135 cm deep 1 year after planting. Conversely, Chrysopogon zizanioides showed scarce adaptation to local conditions. In the first experiment, median chemical oxygen demand (COD) in water passing through the floating wetland system was reduced by 66%, biochemical oxygen demand by 52%, and total phosphorus by 65%. In the second experiment, the 2 × 3 design had a slightly better performance than 2 × 2 in reducing COD (38 and 28% of removal, respectively). The two designs performed similarly on NO3-N, reducing the incoming concentrations by 12% (2 × 3 design) and 14% (2 × 2). This form of nitrogen represents almost all the total nitrogen, which was abated by 13% by the 2 × 3 design and by 29% by 2 × 2 design.

Journal ArticleDOI
TL;DR: In this article, a continuous flow incubation system (CFIS) was used to assess four phosphorus (P) inactivation agents (alum, Phoslock, a new modified zeolite (Z2G1 or Aqual-P™), and allophone) when used as sediment capping agents to manage internal P loads in lakes.
Abstract: A novel application of a continuous flow incubation system (CFIS) was used to assess four phosphorus (P) inactivation agents—alum, Phoslock™, a new modified zeolite (Z2G1 or Aqual-P™), and allophone—when used as sediment capping agents to manage internal P loads in lakes. The CFIS technique allowed combined efficacy and sustainability assessment, including: (1) flux measurements during simulation of stratified (anoxic) and mixed (aerobic) conditions on the same sediment through multiple cycles to assess the longevity of a range of product doses; (2) simulation of a summer algal bloom collapse and subsequent burial of the products; and (3) investigation of non-target effects on nitrification and denitrification processes at the sediment–water interface. Minimum P-removal dose rates were found to differ substantially at 80 g m−2 for alum, 190 g m−2 for Z2G1, 220 g m−2 for allophane and 280 g m−2 for Phoslock™, for similar capping layer thickness of about 2 mm, and would be effective for at least 4 years. All products temporarily suppressed nitrification and denitrification under aerobic conditions, and it may be important to minimise product application to any permanently aerobic zones, such as the littoral areas of a lake. While the aluminium (Al)-based products did not enhance Al fluxes in the CFIS, lanthanum (La) was released at a near constant rate of around 2 mg La m−2 day−1 from the Phoslock™ treatments over a period of at least 14 days. Spatial variability of sediment P, bioturbation, and burial are factors that will affect up-scaling these results to a whole lake.

Journal ArticleDOI
TL;DR: In this paper, the pivotal role of copepods in marine ecosystems, particularly in the Inland Sea of Japan, was reviewed, and an ongoing ecosystem shift from dominance by fish to dominance by jellyfish as a consequence of human forcing was described.
Abstract: Copepods, the most abundant planktonic metazoans, constitute an intermediate trophic position between phytoplankton and higher trophic-level animals such as fish and jellyfish. Fish and jellyfish are adversaries because they often compete for prey copepods and also can be prey of each other. The classical food chain represented by phytoplankton–copepod–fish is the main process leading to efficient and sustainable production of fish as human food. At present, more than 75% of world fish stocks are fully or over exploited. On the other hand, jellyfish populations have increased world-wide, particularly in waters under significant human influences. Two such cases are seen in East Asian waters, where massive blooms of moon jellyfish (Aurelia aurita s.l.) and giant jellyfish (Nemopilema nomurai) have repeatedly occurred in recent decades, causing severe damage to local fisheries. In this article, I will review the pivotal role of copepods in marine ecosystems, particularly in the Inland Sea of Japan, where the annual fish catch per unit area is among the world’s highest. Then, I will describe an ongoing ecosystem shift from dominance by fish to dominance by jellyfish as a consequence of human forcing. Finally, I will propose to create “sato-umi”, a coastal sea with high productivity and biodiversity with wise human interaction, where copepod production would most efficiently transforms into food for humans.

Journal ArticleDOI
TL;DR: In this article, a 120-cm long core from a shallow lake in the Yangtze River basin was analyzed to track its nutrient history and the causes of eutrophication.
Abstract: Chaohu Lake, a large (770 km2) shallow lake in the Yangtze River basin, has experienced serious eutrophication over the past three decades. To track its nutrient history and the causes, multi-proxies (diatom, geochemical indicators, magnetic susceptibility, and grain size) were analyzed on a 120-cm long core from the lake. Nutrient dynamics of the past 500 years were reconstructed using sedimentary diatom assemblages and an established diatom-inferred total phosphorus (DI-TP) transfer function. Between about 1500 and 1740 AD, the lake remained in an upper-mesotrophic state with the DI-TP oscillating around 60 μg l−1. Together with enhanced agricultural activities, a drier and warmer climate led to a decrease in water level and water exchange volume with the Yangtze River, thus triggering the first phase of eutrophication (ca. 1740–1820 AD). After this eutrophic episode, the lake had exhibited a recovery in nutrient status until the 1960s. However, the lake became susceptible to nutrient input due to a sharp decrease in water exchange volume after its impoundment in 1962. A large amount of anthropogenic nutrient input has exacerbated eutrophication in the lake since the late 1970s. Redundancy analysis using a range of sedimentary proxies indicated that the two eutrophication phases were mainly attributed to anthropogenic nutrient loading and altered hydrological conditions. The hydraulic connection with the Yangtze River should be the primary self-adjustment mechanism of the lake against anthropogenic nutrient input.

Journal ArticleDOI
TL;DR: A new locally produced P-inactivation agent, Z2G1, was tested on sediment cores from Lake Okaro, New Zealand, for phosphorus removal efficacy and any non-target side effects prior to a whole lake trial to manage internal P loading as mentioned in this paper.
Abstract: A new locally produced P-inactivation agent, Z2G1, was tested on sediment cores from Lake Okaro, New Zealand, for phosphorus (P) removal efficacy and any non-target side effects prior to a whole lake trial to manage internal P loading. Z2G1 is a granular product which settles rapidly, and was designed as a sediment capping material. It is a modified zeolite which acts as a carrier for the aluminium (Al)-based P-binding agent. It was found to have a high affinity for P and did not release Al into the water column. Continuous-flow incubation study results showed that a thin layer of Z2G1 (~2 mm) could completely block the release of P from the sediment under aerobic and anoxic conditions, and remove P from the overlying water in contact with the capping layer. The Z2G1 capping layer neither released metals itself nor did it induce the release of metals from the sediments, and the zeolite substrate absorbed arsenic and mercury from the geothermally influenced Lake Okaro sediments. In general, zeolites are strong cation absorbers and the zeolite substrate of Z2G1 absorbed ammoniacal nitrogen, making it the only sediment capping material to actively remove both P and N. There were, however, indications of a suppression effect on microbial denitrification by the Z2G1 capping layer under aerobic conditions. Overall, the Z2G1 sediment capping material is a highly effective P-inactivation agent which might be a useful material for managing internal P loads in eutrophic lakes.

Journal ArticleDOI
TL;DR: It is concluded that benthic algae species composition at nutrient poor sites reacts only slightly to small increases in phosphorus concentration, while it is most sensible to eutrophication in the range between 10 and 30 μg TP/l.
Abstract: Eutrophication is one of the major problems for surface water quality in Norway, particularly in the lowlands near settlements and agricultural areas. Here, we present a new index based on non-diatomaceous benthic algae (Periphyton index of trophic status, PIT) which is developed on a dataset of >500 samples from >350 sites from the Norwegian mainland and can be used to describe trophic status at a river site. PIT indicator values for benthic algae taxa are derived from water total phosphorus concentrations and range from 1.87 for Stigonema hormoides to 68.91 for Tribonema sp. PIT site values range from 3.42 to 44.45 and cover a range from oligotrophic to eutrophic conditions. The relationship between the PIT and the total phosphorus concentration has one major threshold at 10 μg/l TP, with a slow increase below and a steep increase above 10 μg/l. We conclude that benthic algae species composition at nutrient poor sites reacts only slightly to small increases in phosphorus concentration, while it is most sensible to eutrophication in the range between 10 and 30 μg TP/l. For the genus Oedogonium, we found a significant positive correlation between filament width and TP concentration, making Oedogonium an easy to use eutrophication indicator.

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the literature on fishers' attitudes towards marine protected areas (MPAs) and their impact on the fishing industry, and identify the most investigated topics related to commercial fishers’ attitudes towards MPAs.
Abstract: Marine protected areas (MPAs) are attracting widespread attention worldwide as a tool for fishery management and marine ecosystem conservation. The establishment of MPAs has increased greatly in recent years mostly due to international commitments to the establishment of a global network of MPAs by 2012. MPAs have the potential to strongly affect the fishing industry, and their success depends, at least partly, on fishers’ attitudes towards this management measure. However, research on MPAs tends to focus on the ecological and conservation aspects of this management approach and not on its human dimensions. Studies in attitudes, perceptions, beliefs and preferences related to MPA issues have been identified as priority social science topics in need of research. We present a ‘rapid review’, conducted systematically, of the literature published up to September 2009 and aimed at identifying the most investigated topics related to commercial fishers’ attitudes towards MPAs, describing the main findings from these studies, and analysing the implications for management. Most published work focuses on fishers’ attitudes towards issues of governance, conservation of biodiversity and the environment, and the impact of MPAs on fishing activity. Despite the recent increase in the literature on the human dimensions of MPAs, the present review reveals that little of this literature originates from empirical studies. Hence, given the forthcoming increase in the implementation of MPAs in the near future, research on fishers’ attitudes towards these management measures is critically needed.

Journal ArticleDOI
TL;DR: A wide ecological amplitude, resistance organs, and high growth rates and dispersion ability provide Hydrilla with great potential to invade and infest a variety of habitats, often resulting in important physico-chemical and biotic effects on the environment.
Abstract: Hydrilla verticillata (Hydrocharitaceae) is a highly prolific, rooted submerged macrophyte native to Asia that has invaded aquatic systems worldwide, causing many ecological and human-related problems. Hydrilla recently invaded the Parana River basin in Brazil, making other ecologically and socially important Brazilian watersheds more susceptible to invasion by this plant. Here, I summarize the relevant information about Hydrilla, focusing on its biotic attributes, abiotic tolerance and effects on ecosystems. The aim of this review is to provide background information to assist with planning for the potential impacts of this species in the Neotropical region (particularly in Brazil) and the development of research, monitoring and management strategies. A wide ecological amplitude, resistance organs, and high growth rates and dispersion ability provide Hydrilla with great potential to invade and infest a variety of habitats, often resulting in important physico-chemical and biotic effects on the environment. Hydrilla is similar in its morphological and ecological aspects to Egeria najas and Egeria densa (South American Hydrocharitaceae), but this non-native species is a superior competitor and can be expected to exert significant pressure in habitats colonized by these native Hydrocharitaceae. Socially important rivers (such as the Sao Francisco River) have a high risk of being infested with Hydrilla, especially in stretches affected by dams, which could prejudice important human activities like hydropower generation. Important wetlands for biodiversity conservation (such as the Pantanal) may also be invaded, but they seem to be more resistant to infestations as long as their natural hydrologies are preserved. Before investing substantial effort to control Hydrilla, managers should weigh the potential costs and benefits of available techniques and consider the potential benefits of Hydrilla in providing ecosystem services.

Journal ArticleDOI
TL;DR: The guild ratio (GR′, a ratio of raptorial to microphagous species), an index based on a functional trait, is used, as a novel approach to rotifer dynamics, indicating alternating dominance and the seasonal pattern of the GR′ was consistent across different sampling frequencies.
Abstract: Ecological research is moving from a species-based to a functional-based approach to better understand the underlying principles that govern community dynamics. Studies of functional-based ecology, however, have been limited for zooplankton and particularly for rotifers. While rotifers show a variety of trophi types and coronal shapes, suggesting the importance of niche differentiation in their feeding strategy, relatively little is known of how this relates to rotifer dynamics. We used the guild ratio (GR′, a ratio of raptorial to microphagous species), an index based on a functional trait (i.e. feeding strategy), as a novel approach to rotifer dynamics. We extracted the seasonal GR′ by using seasonal trend decomposition and investigated similarities between study sites (Lake Washington, USA and Lake Caldonazzo, Italy) and its relation to cladocerans by cross-correlation analysis. Our study indicated that (i) raptorial and microphagous rotifers showed alternating dominance, and that raptorial rotifers and cladocerans had a synchronous pattern, (ii) the seasonal pattern of the GR′ was consistent across different sampling frequencies, and (iii) the GR′ was similar in both lakes. We interpreted these patterns as the general strength of the GR′: discernment of species–environment relationships and robustness across sampling regimes. The limitations of the GR′ (i.e. species identity is neglected, simplification of food preferences) can also be seen as its strong point: synthesis of multi-species patterns. In addition, the independence of GR′ from species-level identification and its potential to make use of datasets with infrequent sampling intervals and low taxon resolution could further support its innovative aspect.

Journal ArticleDOI
TL;DR: In this article, the results obtained on monitoring four different streams and wetland restoration projects are compared with respect to hydrology, i.e. flow pattern and discharge of ground or surface water, retention of phosphorus (P), and removal of nitrogen (N).
Abstract: During the last 15–20 years, re-establishment of freshwater riparian wetlands and remeandering of streams and rivers have been used as a tool to mitigate nutrient load in downstream recipients in Denmark. The results obtained on monitoring four different streams and wetland restoration projects are compared with respect to hydrology, i.e. flow pattern and discharge of ground or surface water, retention of phosphorus (P), and removal of nitrogen (N). Furthermore, the monitoring strategies applied for quantifying the post-restoration nutrient retention are evaluated. The four wetland restoration projects are the Brede River restoration (including river valley groundwater flow, remeandering and inundation), Lyngbygaards River restoration (groundwater flow, irrigation with drainage water, inundation with river water and remeandering), Egeskov fen (fen re-establishment and stream remeandering) and Egebjerg Meadows (fen restoration and hydrological reconnection to Store Hansted River). Retention of phosphorus varied between 0.13 and 10 kg P ha−1 year−1, while the removal of nitrogen varied between 52 and 337 kg N ha−1 year−1. The monitoring strategy chosen was not optimal at all sites and would have benefitted from a knowledge on local hydrology and water balances in the area to be restored before planning for the final monitoring design. Furthermore, the outcome concerning P retention would have benefitted from a more frequent sampling strategy.

Journal ArticleDOI
TL;DR: In this paper, the authors propose a framework for the assessment of ecosystem health in groundwater ecosystems, which is based on the notion of watershed health and its assessment in connected aquifer ecosystems.
Abstract: The notion of ecosystem health has been widely adopted in environmental policy, particularly in the management of river systems. Despite this, even a notional understanding of ecosystem health and its assessment in connected aquifer ecosystems remains elusive. In this article, we propose a definition and provide a tiered framework for the assessment of ecosystem health in groundwater. From the literature we identify general attributes of a healthy groundwater ecosystem and from these develop primary (Tier 1) indicators of health. Where Tier 1 benchmarks are exceeded or more detailed assessment is required, we discuss a range of indicators (Tier 2) that may together generate a multimetric index of groundwater health. Our case study using samples from an alluvial aquifer in north-western New South Wales, Australia, demonstrates the utility of both tiers of the framework, and the ability of the approach to separate disturbed and undisturbed sites. The process of multimetric development is simple and our Tier 2 benchmarks determined from limited data. Nevertheless, our framework will be applicable and readily adaptable to site-specific contexts.

Journal ArticleDOI
TL;DR: This overview reveals a complex nexus of extrinsic proximate abiotic and biotic factors and interactions that influence body size, the phenotypic expression of which in natural systems commonly reflects contrasting outcomes related to conflicting direct and/or indirect selective pressures.
Abstract: In view of its fundamental and pervasive influences and impacts on organism physiology and ecology, body size is recognized as a key component of evolutionary fitness and serves as the cornerstone of a seminal contribution in freshwater zooplankton ecology—the Size Efficiency Hypothesis (SEH) of Brooks & Dodson (Science 150:28–35, 1965). While the roles and implications of body size in predation and competition—central tenets of the SEH—have been widely considered and reviewed, no broader integrated synthesis exists of the collective array of body size determinants and their implications in the ecology in crustacean zooplankton—a numerically and functionally dominant group of aquatic organisms. Focusing on planktonic Cladocera and Copepoda in inland waters, in particular, we provide a wide-ranging overview of the direct and/or indirect effects of environmental conditions, consumable resources and biotic interactions that independently and/or collectively influence the phenotypic expression of body size (particularly as length), both within and between species. Some indirect ultimate evolutionary consequences of body size are considered, and we identify some controversies and unresolved issues related to this biologically crucial trait. While by no means exhaustive, our overview reveals a complex nexus of extrinsic proximate abiotic and biotic factors and interactions that influence body size, the phenotypic expression of which in natural systems commonly reflects contrasting outcomes related to conflicting direct and/or indirect selective pressures. In general, however, body size (both inter- and intra specifically) declines with rising temperature and increases with rising food supply (depending on its quality), although both temperature and food supply exert contrary influences on particular taxa (or life history stages) under certain environmental circumstances. Predation undoubtedly has an overriding influence on body size selection. Depending on its mechanistic basis (visual, tactile or both in tandem), it selectively favours either small or large body size, both within (adults vs. juveniles) and between prey species, which are accordingly often ‘size-trapped’ between contrasting selective pressures, with consequent indirect effects. The bioenergetics of fundamental physiological processes undoubtedly set constraints on body size and serve as the primary determinant. However, within such constraints, the phenotypic expression of body size reflects its adaptive modification in response to the prevailing abiotic and biotic environment. As such, body size represents an emergent ecological property, reflecting the outcome of specific circumstances and conditions, which vary both temporally within and spatially between different ecosystems, and are accordingly context dependent. Nevertheless, underlying physiological advantages of larger size (within and between species) among crustacean zooplankters—lower mass-specific metabolic rates (although recently challenged), higher individual feeding rates (at least among cladocerans), potentially wider food size-ranges, better starvation tolerances, higher potential fecundity, etc.—collectively favour the selection of increased body size, as predicted by the SEH. Although competitive superiority of large size (measured in terms of minimal food requirements) has been confirmed experimentally, this cannot be generalized to natural conditions, where conflicting and temporally variable pressures apply, and contribute to generally mixed, and temporally variable body size compositions. Complex underlying ecological interactions and influences ultimately determine the phenotypic expression of body size in directions consistent with fitness optimization under prevailing circumstances. Certain specific and general deficiencies in information are identified. In particular, the overwhelming emphasis on daphniid cladocerans as model study taxa in freshwater ecosystems has marginalized the acquisition of a comparably broad and penetrating understanding of specific features both of non-daphniid cladoceran and copepod life histories and body size selection. Among daphniid cladocerans, contemporary definitive understanding devolves largely from reductionist laboratory approaches. Holistic re-integration of these mechanistic findings into natural system circumstances presents a difficult challenge that is attracting increasingly attention. With regard to copepods, synthetic integration of the expansive marine knowledge base appears crucial to inform and direct future investigations on freshwater taxa. The question of intrinsic body size regulation in copepods and cladocerans, especially in regard to final phenotypic plasticity in body size expression, awaits resolution. Overall, body size remains a multi-facetted and complex topic, offering promising challenges for further investigation.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth on the basis of published data from 54 lakes and reservoirs in different climate regions around the world.
Abstract: We analysed phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth on the basis of published data from 54 lakes and reservoirs in different climate regions around the world. Our analysis demonstrated that reservoirs and lakes that received higher areal loading of phosphorus (TPin) also retained more P per m2 but the proportion of the external P loading retained in the waterbody (retention coefficient, R P) remained generally independent of TPin. The waterbodies with longer hydraulic residence times (T R) retained larger proportions of external P and the correlation between R P and T R was much stronger in lakes with areas larger than 25 km2 than in the whole data set. TPin and T R together determined 78% of the variation in R P in large lakes. We also partially confirmed our hypothesis that waterbodies with bigger relative depths (Z R) retain more of the external phosphorus than larger and shallower waterbodies with lower Z R. The hypothesis was, however, validated only for lakes larger than 25 km2 and for those with T R <0.3 year, where R P increased significantly with increasing Z R. In stratified lakes, increasing relative depth correlated with reduced P retention capacity, demonstrating the complex nature of phosphorus biogeochemistry in lake ecosystems.

Journal ArticleDOI
TL;DR: The difference between the newly invaded and the established sites suggests that round goby population structure may be affected by density, whilst examples of population structure and behaviour in gobies and other species provide a basis for generating hypotheses for range expansion.
Abstract: Invasive species represent a challenge because the particular characteristics of a species’ invasion are often unknown before the invasion To provide some clarity as to how invasive species demographic structure might change as a population advances its range, we compared the proportion of occupied sites, size structure and sex ratio of round gobies in the area where they first invaded with more recently invaded areas at the extent of their range in a river in south-eastern Ontario We used a standardized angling technique to sample gobies larger than 45-mm total length in the summer and early autumn of 2007 Round goby at the upstream and downstream extent of their range occupied a lower proportion of randomly selected sites, and contained a wider distribution of sizes as well as significantly larger individuals Sex ratios in all areas were male-biased and the male-to-female ratio was significantly higher in the upstream segment of the river (22:1) compared to the area of first introduction (14:1) The difference between the newly invaded and the established sites suggests that round goby population structure may be affected by density The results of this study help us further describe the demographic characteristics of biological invasions whilst examples of population structure and behaviour in gobies and other species provide a basis for generating hypotheses for range expansion

Journal ArticleDOI
TL;DR: In this article, the impact of different freshwater inflow volumes on benthic communities and water column dynamics in different estuary classes was compared in lagoons (with no direct inflow sources), tidal rivers that empty directly into the Gulf of Mexico, and bar-built bay systems (with direct infllow sources) along the Texas coast.
Abstract: The aim of this study was to compare the impact of different freshwater inflow volumes on benthic communities and water column dynamics in different estuary classes. Benthic and water column spatial dynamics were contrasted in lagoons (with no direct inflow sources), tidal rivers that empty directly into the Gulf of Mexico, and bar-built bay systems (with direct inflow sources) along the Texas (USA) coast to determine the role of inflow in regulating ecosystem structure and function. Chlorophyll-a and nutrient concentrations were inversely correlated with salinity and were thus highest in the river systems, but lowest in lagoons. All Texas estuary types studied have conservative mixing for silicate and ammonium but are sinks for nitrite plus nitrate and phosphate. Macrobenthic production (abundance and biomass) was lowest in rivers and highest in lagoons. Diversity was low in estuaries with salinities between 1 and 17, but increased with salinities of up to 30, before decreasing in hypersaline conditions. Macrofaunal community structure divided the estuaries into two groups. The first group represented polyhaline communities and contained lagoons (East Matagorda, Matagorda, Christmas, and South Bays). The second group represented oligo-mesohaline community characteristics and contained the secondary bays (Lavaca Bay and Cedar Lakes) and rivers (San Bernard River, Brazos River, and the Rio Grande). The implications of these results for managing freshwater flows is that altered hydrology can change the character of estuarine systems regardless of their classification as bays, lagoons, or tidal rivers.

Journal ArticleDOI
TL;DR: Investigation of the influence of macrophyte structural heterogeneity and food availability on several parameters (number of individuals, biomass, body size distribution, taxon richness, and diversity) of the macroinvertebrate community in a Pampean stream found macrophytes with higher fractal dimension supported a greater abundance of macro invertebrates, especially those of small body size.
Abstract: Environmental heterogeneity in natural ecosystems influences several parameters at the population and community levels. In freshwater ecosystems, habitat heterogeneity can be provided by macrophyte species with different structural shapes. Previous studies suggest that aquatic plants with more complex architectures will support higher number, biomass, and taxon richness of macroinvertebrates than plants with simpler shape. We investigated the influence of macrophyte structural heterogeneity (quantified by fractal dimension) and food availability (represented by epiphytic biomass) on several parameters (number of individuals, biomass, body size distribution, taxon richness, and diversity) of the macroinvertebrate community in a Pampean stream. Four submerged macrophyte species (Egeria densa, Elodea ernstae, Ceratophyllum demersum, and Stuckenia striata) and associated macroinvertebrates were sampled in late spring, summer, and autumn. Plants were photographed and fractal dimension was estimated from the images by the box-counting method. Fractal dimension was independent of plant surface area per unit of macrophyte biomass and differed significantly among species. Mean fractal dimension varied between 1.29 and 1.62, and increased following the sequence E. densa → S. striata → E. ernstae → C. demersum. Macrophyte species with higher fractal dimension supported a greater abundance of macroinvertebrates, especially those of small body size (500–1,000 μm); but fractal dimension was unrelated to macroinvertebrate biomass, richness, and diversity. However, overall animal biomass was significantly associated to the epiphytic abundance. Consequently, macrophyte heterogeneity influences macroinvertebrate density and body size distribution, while animal biomass depends on epiphytic food resources provided by plants.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of light availability in primary production of phytoplankton in a shallow and turbid nutrient-replete estuary, and found that high water column turbidity promoted a rapid attenuation of light and created a compressed profile with optimal photosynthetic conditions.
Abstract: Tagus estuary is one of the largest estuaries of Western Europe. With the aim of unravelling the drivers of primary production in this shallow and turbid nutrient replete estuary, we tested the hypothesis that light availability is a major factor controlling phytoplankton production. Environmental parameters, phytoplankton biomass, community composition, and photosynthetic parameters were monitored at two sites in the estuary during a complete annual cycle. Despite the fact that nutrient concentrations were always above growth-limiting values, Chl a concentrations were relatively low throughout the study period. High water column turbidity, due to riverine inputs, promoted a rapid attenuation of light and created a compressed profile with optimal photosynthetic conditions. Therefore, the phytoplankton community, dominated by small cells, such as diatoms and cryptophycean flagellates, displayed highly photosynthetic efficiency and low light-saturated photosynthetic rates as a photo-acclimation response to low light conditions year-round. Primary production rate was unimodal, peaking in the summer months. In such estuarine system, gross primary production could thus be predicted by an existing robust empirical model based on pigment standing crop (Chl a), surface irradiance (E 0) and optical depth (Z eup). Compared to other shallow estuaries, the Tagus can be classified as a low- to moderately productive estuary, being the turbidity-induced low light conditions the principal factor limiting phytoplankton growth.

Journal ArticleDOI
TL;DR: This article investigated the impact of river water pulses on the development of toxic cyanobacterial blooms in Lake Pontchartrain during and after a 1-month Bonnet Carre Spillway opening in 2008.
Abstract: Pulsed river water events can increase nutrient levels potentially translating into enhanced primary production, phytoplankton community shifts, and bloom formation. The Bonnet Carre Spillway is a managed river diversion which can be used to redirect a significant amount of Mississippi River water into Lake Pontchartrain, reducing the risks of flood in the downstream communities during runoff seasons. We investigated nutrient enrichment and consequent changes in phytoplankton biomass, including toxic species in Lake Pontchartrain during and after a 1-month Bonne Carre Spillway opening in 2008. Water samples were collected along a 30 km transect. A freshwater plume was found to have formed by the strong river input that had limited mixing with the lake during the opening. The plume and lake water gradually mixed together after the Spillway was closed, indicated by the reduction of the horizontal salinity gradient. The river pulse increased the lake nitrate and dissolved reactive phosphorus concentrations to more than five times the lake background in the plume stations. Nutrient concentrations decreased rapidly after the Spillway closure as the plume dissipated. Diatoms and chlorophytes dominated the system during the opening. After the Spillway closure, there was a shift over time from diatom dominance to toxic cyanobacteria dominance that corresponded to more stable, warmer, and nutrient-limited water conditions. Associated toxins were present and varied over time and space. Further research on the phytoplankton assemblages on the lake is needed in subsequent, non-Spillway opening years to evaluate the impact of river water pulses on the development of these toxic cyanobacterial blooms.

Journal ArticleDOI
TL;DR: It was found that zooplankton biomass was strongly dominated by one species of calanoid copepod—Arctodiaptomus dorsalis—and Cladocera were almost entirely absent in spring and summer.
Abstract: Crustacean zooplankton data were compiled from long-term observational studies at seven large shallow Florida lakes, to determine whether there are general characteristics in regard to species composition, body size, and biomass. In particular, we examined whether patterns in body size and species richness fit empirical models developed by Stanley Dodson. The lakes included range in size from 125 to 1730 km2 and encompass mesotrophic to hyper-eutrophic conditions. We found that zooplankton biomass was strongly dominated by one species of calanoid copepod—Arctodiaptomus dorsalis. Large daphnids were absent, and Cladocera assemblages were dominated by small taxa such as Ceriodaphnia, Chydorus, and Eubosmina. The total number of species of pelagic cladocerans (8–12) was consistent with Dodson’s predictions based on lake area. The average size of crustacean zooplankton in Florida lakes is small in comparison with temperate communities. A. dorsalis is the smallest calanoid copepod in North America, and the mean length of Cladocera (0.6 mm) is consistent with Dodson’s results that size decreases from temperate to tropical zones. Total biomass of crustacean zooplankton was very low, ratios of zooplankton to phytoplankton biomass (0.01–0.1) are among the lowest reported in the literature, and the zooplankton displayed short-lasting early spring peaks in biomass. Cladocera were almost entirely absent in spring and summer. Factors known to occur in Florida lakes, which appear to explain these characteristics of biomass, include intense fish predation and high summer water temperature.

Journal ArticleDOI
TL;DR: In this paper, the authors presented limnological and morphological characteristics, physical and chemical properties of waters, and geochemistry of surface sediments for 63 aquatic ecosystems located on the karst Yucatan Peninsula and surrounding areas of Belize and the Guatemalan highlands and eastern lowlands.
Abstract: This study presents limnological and morphological characteristics, physical and chemical properties of waters, and geochemistry of surface sediments for 63 aquatic ecosystems located on the karst Yucatan Peninsula and surrounding areas of Belize and the Guatemalan highlands and eastern lowlands. Our principal goal was to classify the aquatic systems based on their water variables. A principal component analysis (PCA) of the surface water chemistry data showed that a large fraction of the variance (29%) in water chemistry is explained by conductivity and major ion concentrations. The broad conductivity range, from 168 to 55,300 μS cm−1 reflects saline water intrusion affecting coastal aquatic environments, and the steep NW–S precipitation gradient, from ~450 to >3,200 mm year−1. Coastal waterbodies Celestun and Laguna Rosada displayed the highest conductivities. Minimum surface water temperatures of 21.6°C were measured in highland lakes, and warmest temperatures, up to 31.7°C, were recorded in the lowland waterbodies. Most lakes showed thermal stratification during the sampling period, with the exception of some shallow (<10 m) systems. Lakes Chichancanab, Milagros, and Bacalar displayed sulfate-rich waters. Waters of sinkholes had relatively high conductivities (<3,670 μS cm−1) and a broad range of δ18O values (−4.1 to +3.8‰). Ca, HCO3, and SO4 dominated the waters of the lowland lakes, whereas Na was the dominant cation in highland lakes. Coastal aquatic ecosystems were dominated by Na and Cl. Cluster analysis based on surface water variables classified aquatic environments of the lowlands and highlands into three groups: (1) lowland lakes, ponds, wetlands, and coastal waterbodies (2) highland lakes, and (3) sinkholes and rivers. A broad trophic state gradient was recorded, ranging from the eutrophic Lake Amatitlan and the Timul sinkhole to oligotrophic Laguna Ayarza, with the highest water transparency (11.4 m). We used major and trace elements in surface sediments to assess pollution of waterbodies. Lakes Amatitlan, Atescatempa, El Rosario, Cayucon, Chacan-Lara, La Misteriosa, rivers Subin and Rio Dulce, the wetland Jamolun, and the sinkhole Peten de Monos showed evidence of pollution and urban development. Their surface sediments displayed high concentrations of As, Cu, Fe, Ni, Pb, Se, Zn, and Zr, which suggest moderate to strong pollution.