scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cognitive Neuroscience in 2012"


Journal ArticleDOI
TL;DR: A meta-analysis of 107 neuroimaging studies of self- and other-related judgments using multilevel kernel density analysis argues for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity ofmPFC.
Abstract: The distinction between processes used to perceive and understand the self and others has received considerable attention in psychology and neuroscience. Brain findings highlight a role for various regions, in particular the medial PFC (mPFC), in supporting judgments about both the self and others. We performed a meta-analysis of 107 neuroimaging studies of self-and other-related judgments using multilevel kernel density analysis [Kober, H., & Wager, T. D. Meta-analyses of neuroimaging data. Wiley Interdisciplinary Reviews, 1, 293-300, 2010]. We sought to determine what brain regions are reliably involved in each judgment type and, in particular, what the spatial and functional organization of mPFC is with respect to them. Relative to nonmentalizing judgments, both self-and other judgments were associated with activity in mPFC, ranging from ventral to dorsal extents, as well as common activation of the left TPJ and posterior cingulate. A direct comparison between self-and other judgments revealed that ventral mPFC as well as left ventrolateral PFC and left insula were more frequently activated by self-related judgments, whereas dorsal mPFC, in addition to bilateral TPJ and cuneus, was more frequently activated by other-related judgments. Logistic regression analyses revealed that ventral and dorsal mPFC lay at opposite ends of a functional gradient: The z coordinates reported in individual studies predicted whether the study involved self-or other-related judgments, which were associated with increasingly ventral or dorsal portions of mPFC, respectively. These results argue for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity of mPFC.

654 citations


Journal ArticleDOI
TL;DR: It is demonstrated that memory can be preserved across a brief delay despite the apparent loss of sustained representations, and the results suggest that, even for small memory loads not exceeding the capacity limits of STM, the active maintenance of a stimulus representation may not be necessary for its short-term retention.
Abstract: It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay period activity may, in fact, reflect the focus of attention, rather than STM. We unconfounded attention and memory by causing external and internal shifts of attention away from items that were being actively retained. Multivariate pattern analysis of fMRI indicated that only items within the focus of attention elicited an active neural trace. Activity corresponding to representations of items outside the focus quickly dropped to baseline. Nevertheless, this information was remembered after a brief delay. Our data also show that refocusing attention toward a previously unattended memory item can reactivate its neural signature. The loss of sustained activity has long been thought to indicate a disruption of STM, but our results suggest that, even for small memory loads not exceeding the capacity limits of STM, the active maintenance of a stimulus representation may not be necessary for its short-term retention.

396 citations


Journal ArticleDOI
TL;DR: It is shown that focal damage to critical locations causes disruption of network organization throughout the brain and can have a widespread, nonlocal impact on brain network organization when there is damage to regions important for the communication between networks.
Abstract: Although it is generally assumed that brain damage predominantly affects only the function of the damaged region, here we show that focal damage to critical locations causes disruption of network organization throughout the brain. Using resting state fMRI, we assessed whole-brain network structure in patients with focal brain lesions. Only damage to those brain regions important for communication between subnetworks (e.g., "connectors")-but not to those brain regions important for communication within sub-networks (e.g., "hubs")-led to decreases in modularity, a measure of the integrity of network organization. Critically, this network dysfunction extended into the structurally intact hemisphere. Thus, focal brain damage can have a widespread, nonlocal impact on brain network organization when there is damage to regions important for the communication between networks. These findings fundamentally revise our understanding of the remote effects of focal brain damage and may explain numerous puzzling cases of functional deficits that are observed following brain injury.

313 citations


Journal ArticleDOI
TL;DR: Both MTG and vATL are activated in common for word and picture semantic processing, and this result follows from two principal axes of convergence in the temporal lobe.
Abstract: Most contemporary theories of semantic memory assume that concepts are formed from the distillation of information arising in distinct sensory and verbal modalities. The neural basis of this distillation or convergence of information was the focus of this study. Specifically, we explored two commonly posed hypotheses: (a) that the human middle temporal gyrus (MTG) provides a crucial semantic interface given the fact that it interposes auditory and visual processing streams and (b) that the anterior temporal region-especially its ventral surface (vATL)-provides a critical region for the multimodal integration of information. By utilizing distortion-corrected fMRI and an established semantic association assessment (commonly used in neuropsychological investigations), we compared the activation patterns observed for both the verbal and nonverbal versions of the same task. The results are consistent with the two hypotheses simultaneously: Both MTG and vATL are activated in common for word and picture semantic processing. Additional planned, ROI analyses show that this result follows from two principal axes of convergence in the temporal lobe: both lateral (toward MTG) and longitudinal (toward the anterior temporal lobe).

309 citations


Journal ArticleDOI
TL;DR: The results suggest that aging affects not only the default mode network but also other networks, specifically the salience network, and aging affects internetwork connectivity; and disruption of thesalience network is related to cognitive decline in elderly people.
Abstract: Aging is related to cognitive decline, and it has been reported that aging disrupts some resting state brain networks. However, most studies have focused on the default mode network and ignored other resting state networks. In this study, we measured resting state activity using fMRI and explored whether cognitive decline with aging is related to disrupted resting state networks. Independent component analysis was used to evaluate functional connectivity. Notably, the connectivity within the salience network that consisted of the bilateral insula and the anterior cingulated cortex decreased with aging; the impairment of functional connectivity was correlated with measured decreases in individual cognitive abilities. Furthermore, certain internetwork connectivities (salience to auditory, default mode to visual, etc.) also decreased with aging. These results suggest that (1) aging affects not only the default mode network but also other networks, specifically the salience network; (2) aging affects internetwork connectivity; and (3) disruption of the salience network is related to cognitive decline in elderly people.

279 citations


Journal ArticleDOI
TL;DR: The results suggest that adult foreign language learners can come to rely on native-like language brain mechanisms, but that the conditions under which the language is learned may be crucial in attaining this goal.
Abstract: It is widely believed that adults cannot learn a foreign language in the same way that children learn a first language. However, recent evidence suggests that adult learners of a foreign language can come to rely on native-like language brain mechanisms. Here, we show that the type of language training crucially impacts this outcome. We used an artificial language paradigm to examine longitudinally whether explicit training (that approximates traditional grammar-focused classroom settings) and implicit training (that approximates immersion settings) differentially affect neural (electrophysiological) and behavioral (performance) measures of syntactic processing. Results showed that performance of explicitly and implicitly trained groups did not differ at either low or high proficiency. In contrast, electrophysiological (ERP) measures revealed striking differences between the groups' neural activity at both proficiency levels in response to syntactic violations. Implicit training yielded an N400 at low proficiency, whereas at high proficiency, it elicited a pattern typical of native speakers: an anterior negativity followed by a P600 accompanied by a late anterior negativity. Explicit training, by contrast, yielded no significant effects at low proficiency and only an anterior positivity followed by a P600 at high proficiency. Although the P600 is reminiscent of native-like processing, this response pattern as a whole is not. Thus, only implicit training led to an electrophysiological signature typical of native speakers. Overall, the results suggest that adult foreign language learners can come to rely on native-like language brain mechanisms, but that the conditions under which the language is learned may be crucial in attaining this goal.

239 citations


Journal ArticleDOI
TL;DR: Assessing empathic responses to sad images under three conditions, higher levels of self-reported experienced empathy and activity in empathy-related areas, notably MPFC, were higher in the empathize condition than in the load condition, suggesting that empathy is not a fully automatic experience.
Abstract: Empathy is a critical aspect of human emotion that influences the behavior of individuals as well as the functioning of society. Although empathy is fundamentally a subjective experience, no studies have yet examined the neural correlates of the self-reported experience of empathy. Furthermore, although behavioral research has linked empathy to prosocial behavior, no work has yet connected empathy-related neural activity to everyday, real-world helping behavior. Lastly, the widespread assumption that empathy is an automatic experience remains largely untested. It is also unknown whether differences in trait empathy reflect either variability in the automaticity of empathic responses or the capacity to feel empathy. In this study, 32 participants completed a diary study of helping behavior followed by an fMRI session, assessing empathic responses to sad images under three conditions: watching naturally, under cognitive load, and while empathizing. Across conditions, higher levels of self-reported experienced empathy were associated with greater activity in medial PFC (MPFC). Activity in MPFC was also correlated with daily helping behavior. Self-report of empathic experience and activity in empathy-related areas, notably MPFC, were higher in the empathize condition than in the load condition, suggesting that empathy is not a fully automatic experience. Additionally, high trait empathy participants displayed greater experienced empathy and stronger MPFC responses than low trait empathy individuals under cognitive load, suggesting that empathy is more automatic for individuals high in trait empathy. These results underline the critical role that MPFC plays in the instantiation of empathic experience and consequent behavior.

238 citations


Journal ArticleDOI
TL;DR: It is shown that white matter reorganizes progressively across multiple sites as adults study a new language and the potential of longitudinal diffusion tensor imaging as a new tool to yield insights into cognitive processes is demonstrated.
Abstract: Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lovden, M., Bodammer, N. C., Kuhn, S., Kaufmann, J., Schutze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Muller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes occurred in frontal lobe tracts crossing the genu of the corpus callosum-a region not generally included in current neural models of language processing. These results indicate that plasticity of white matter plays an important role in adult language learning and additionally demonstrate the potential of longitudinal diffusion tensor imaging as a new tool to yield insights into cognitive processes.

230 citations


Journal ArticleDOI
TL;DR: Evidence for entrainment of neural oscillations by predictable periodic stimuli in the alpha frequency band is reported and it is shown for the first time that the phase of existing brain oscillations cannot only be modified in response to rhythmic visual stimulation but that the resulting phase-locked fluctuations in excitability lead to concomitant fluctuations in visual awareness in humans.
Abstract: Rhythmic events are common in our sensory world. Temporal regularities could be used to predict the timing of upcoming events, thus facilitating their processing. Indeed, cognitive theories have long posited the existence of internal oscillators whose timing can be entrained to ongoing periodic stimuli in the environment as a mechanism of temporal attention. Recently, recordings from primate brains have shown electrophysiological evidence for these hypothesized internal oscillations. We hypothesized that rhythmic visual stimuli can entrain ongoing neural oscillations in humans, locking the timing of the excitability cycles they represent and thus enhancing processing of subsequently predictable stimuli. Here we report evidence for entrainment of neural oscillations by predictable periodic stimuli in the alpha frequency band and show for the first time that the phase of existing brain oscillations cannot only be modified in response to rhythmic visual stimulation but that the resulting phase-locked fluctuations in excitability lead to concomitant fluctuations in visual awareness in humans. This entrainment effect was dependent on both the amount of spontaneous alpha power before the experiment and the level of 12-Hz oscillation before each trial and could not be explained by evoked activity. Rhythmic fluctuations in awareness elicited by entrainment of ongoing neural excitability cycles support a proposed role for alpha oscillations as a pulsed inhibition of cortical activity. Furthermore, these data provide evidence for the quantized nature of our conscious experience and reveal a powerful mechanism by which temporal attention as well as perceptual snapshots can be manipulated and controlled.

217 citations


Journal ArticleDOI
TL;DR: TMS in healthy human volunteers is used to create “virtual lesions” in structures typically damaged in patients with semantic control deficits: LIFG, left posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS), which reveal that LIFg and pMTG jointly support both the controlled retrieval and selection of semantic knowledge.
Abstract: To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus (LIFG), whereas neuropsychological research suggests that damage to a widely distributed network elicits impairments of semantic control. There is also debate about the relationship between semantic and executive control more widely. We used TMS in healthy human volunteers to create "virtual lesions" in structures typically damaged in patients with semantic control deficits: LIFG, left posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). The influence of TMS on tasks varying in semantic and nonsemantic control demands was examined for each region within this hypothesized network to gain insights into (i) their functional specialization (i.e., involvement in semantic representation, controlled retrieval, or selection) and (ii) their domain dependence (i.e., semantic or cognitive control). The results revealed that LIFG and pMTG jointly support both the controlled retrieval and selection of semantic knowledge. IPS specifically participates in semantic selection and responds to manipulations of nonsemantic control demands. These observations are consistent with a large-scale semantic control network, as predicted by lesion data, that draws on semantic-specific (LIFG and pMTG) and domain-independent executive components (IPS).

209 citations


Journal ArticleDOI
TL;DR: This study maps the connectivity of the human rostral temporal lobe in vivo for the first time using diffusion-weighted imaging probabilistic tractography and indicates that convergence of sensory information in the temporal lobe is in fact a graded process that occurs along both its longitudinal and lateral axes and culminates in the most rostrals limits.
Abstract: In recent years, multiple independent neuroscience investigations have implicated critical roles for the rostral temporal lobe in auditory and visual perception, language, and semantic memory. Although arising in the context of different cognitive functions, most of these suggest that there is a gradual convergence of sensory information in the temporal lobe that culminates in modality-and perceptually invariant representations at the most rostral aspect. Currently, however, too little is known regarding connectivity within the human temporal lobe to be sure of exactly how and where convergence occurs; existing hypotheses are primarily derived on the basis of cross-species generalizations from invasive nonhuman primate studies, the validity of which is unclear, especially where language function is concerned. In this study, we map the connectivity of the human rostral temporal lobe in vivo for the first time using diffusion-weighted imaging probabilistic tractography. The results indicate that convergence of sensory information in the temporal lobe is in fact a graded process that occurs along both its longitudinal and lateral axes and culminates in the most rostral limits. We highlight the consistency of our results with those of prior functional neuroimaging, computational modeling, and patient studies. By going beyond simple fasciculus reconstruction, we systematically explored the connectivity of specific temporal lobe areas to frontal and parietal language regions. In contrast to the graded within-temporal lobe connectivity, this intertemporal connectivity was found to dissociate across caudal, mid, and rostral subregions. Furthermore, we identified a basal rostral temporal region with very limited connectivity to areas outside the temporal lobe, which aligns with recent evidence that this subregion underpins the extraction of modality-and context-invariant semantic representations.

Journal ArticleDOI
TL;DR: The notion that alpha band activity is involved in shaping the functional architecture of the working brain is extended by determining the engagement and disengagement of specific regions: Contralateral alpha decreases to facilitate stimulus detection, whereas ipsilateral alpha increases when active suppression of distracters is required.
Abstract: Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task demands. In previous work, we showed that contralateral somatosensory alpha activity decreases to facilitate processing of an anticipated target stimulus in a tactile discrimination task. In the current study, we asked whether somatosensory alpha activity is also modulated when expecting incoming distracting stimuli on the nonattended side. We hypothesized that an ipsilateral increase of alpha to suppress distracters would be required for optimal task performance. We recorded magneto-encephalography while subjects performed a tactile stimulus discrimination task where a cue directed attention either to their left or right hand. Distracters were presented simultaneously to the unattended hand. We found that alpha power contralateral to the attended hand decreased, whereas ipsilateral alpha power increased. In addition, posterior alpha power showed a general increase. Importantly, these three alpha components all contributed to discrimination performance. This study further extends the notion that alpha band activity is involved in shaping the functional architecture of the working brain by determining the engagement and disengagement of specific regions: Contralateral alpha decreases to facilitate stimulus detection, whereas ipsilateral alpha increases when active suppression of distracters is required. Importantly, the ipsilateral alpha increase is crucial for optimal task performance.

Journal ArticleDOI
TL;DR: The results demonstrate that the P600 is modulated by speaker identity, extending the knowledge about the role of speaker's characteristics on neural correlates of speech processing.
Abstract: How do native listeners process grammatical errors that are frequent in non-native speech? We investigated whether the neural correlates of syntactic processing are modulated by speaker identity. ERPs to gender agreement errors in sentences spoken by a native speaker were compared with the same errors spoken by a non-native speaker. In line with previous research, gender violations in native speech resulted in a P600 effect (larger P600 for violations in comparison with correct sentences), but when the same violations were produced by the non-native speaker with a foreign accent, no P600 effect was observed. Control sentences with semantic violations elicited comparable N400 effects for both the native and the non-native speaker, confirming no general integration problem in foreign-accented speech. The results demonstrate that the P600 is modulated by speaker identity, extending our knowledge about the role of speaker's characteristics on neural correlates of speech processing.

Journal ArticleDOI
TL;DR: This work investigates how the medial frontal cortex acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior and suggests that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.
Abstract: Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

Journal ArticleDOI
TL;DR: VSTM performance is significantly improved by orienting attention to the location of a task-relevant item, and top–down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task- relevant information.
Abstract: Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top-down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.

Journal ArticleDOI
TL;DR: The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.
Abstract: We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.

Journal ArticleDOI
TL;DR: Results show that attentional capture by salient distractors can be inhibited for short-duration search displays, in which it would interfere with target processing, and demonstrate that salience-driven capture is not a purely bottom–up phenomenon but is subject to top–down control.
Abstract: The question whether attentional capture by salient but task-irrelevant visual stimuli is triggered in a bottom-up fashion or depends on top-down task settings is still unresolved. Strong support for bottom-up capture was obtained in the additional singleton task, in which search arrays were visible until response onset. Equally strong evidence for top-down control of attentional capture was obtained in spatial cueing experiments in which display durations were very brief. To demonstrate the critical role of temporal task demands on salience-driven attentional capture, we measured ERP indicators of capture by task-irrelevant color singletons in search arrays that could also contain a shape target. In Experiment 1, all displays were visible until response onset. In Experiment 2, display duration was limited to 200 msec. With long display durations, color singleton distractors elicited an N2pc component that was followed by a late Pd component, suggesting that they triggered attentional capture, which was later replaced by location-specific inhibition. When search arrays were visible for only 200 msec, the distractor-elicited N2pc was eliminated and was replaced by a Pd component in the same time range, indicative of rapid suppression of capture. Results show that attentional capture by salient distractors can be inhibited for short-duration search displays, in which it would interfere with target processing. They demonstrate that salience-driven capture is not a purely bottom-up phenomenon but is subject to top-down control.

Journal ArticleDOI
TL;DR: It is hypothesize that the ERP difference at 220–260 msec reflects neural activity associated with automatic contour integration whereas the difference at 300–340 msec reflects visual awareness, both of which are dissociable from task-related postperceptual processing.
Abstract: An inattentional blindness paradigm was adapted to measure ERPs elicited by visual contour patterns that were or were not consciously perceived. In the first phase of the experiment, subjects performed an attentionally demanding task while task-irrelevant line segments formed square-shaped patterns or random configurations. After the square patterns had been presented 240 times, subjects' awareness of these patterns was assessed. More than half of all subjects, when queried, failed to notice the square patterns and were thus considered inattentionally blind during this first phase. In the second phase of the experiment, the task and stimuli were the same, but following this phase, all of the subjects reported having seen the patterns. ERPs recorded over the occipital pole differed in amplitude from 220 to 260 msec for the pattern stimuli compared with the random arrays regardless of whether subjects were aware of the patterns. At subsequent latencies (300-340 msec) however, ERPs over bilateral occipital-parietal areas differed between patterns and random arrays only when subjects were aware of the patterns. Finally, in a third phase of the experiment, subjects viewed the same stimuli, but the task was altered so that the patterns became task relevant. Here, the same two difference components were evident but were followed by a series of additional components that were absent in the first two phases of the experiment. We hypothesize that the ERP difference at 220-260 msec reflects neural activity associated with automatic contour integration whereas the difference at 300-340 msec reflects visual awareness, both of which are dissociable from task-related postperceptual processing.

Journal ArticleDOI
TL;DR: It is shown that the auditory-evoked brainstem response to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual–verbal version of the n-back task), which supports a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Abstract: Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

Journal ArticleDOI
TL;DR: These findings point to a stronger role for more posterior areas in the parietal and occipitotemporal cortex, relative to PMv, in supporting the understanding of others' actions with reference to one's own actions.
Abstract: The discovery of mirror neurons-neurons that code specific actions both when executed and observed-in area F5 of the macaque provides a potential neural mechanism underlying action understanding. To date, neuroimaging evidence for similar coding of specific actions across the visual and motor modalities in human ventral premotor cortex (PMv)-the putative homologue of macaque F5-is limited to the case of actions observed from a first-person perspective. However, it is the third-person perspective that figures centrally in our understanding of the actions and intentions of others. To address this gap in the literature, we scanned participants with fMRI while they viewed two actions from either a first-or third-person perspective during some trials and executed the same actions during other trials. Using multivoxel pattern analysis, we found action-specific cross-modal visual-motor representations in PMv for the first-person but not for the third-person perspective. Additional analyses showed no evidence for spatial or attentional differences across the two perspective conditions. In contrast, more posterior areas in the parietal and occipitotemporal cortex did show cross-modal coding regardless of perspective. These findings point to a stronger role for these latter regions, relative to PMv, in supporting the understanding of others' actions with reference to one's own actions.

Journal ArticleDOI
TL;DR: The results show that the newborn brain detects identity relations, as evidenced by enhanced activation in the bilateral superior temporal and left inferior frontal regions, and can determine whether such identity relations hold for the initial or final positions of speech sequences, implying that the neural foundations of language acquisition are in place from birth.
Abstract: Breaking the linguistic code requires the extraction of at least two types of information from the speech signal: the relations between linguistic units and their sequential position. Furthermore, these different types of information need to be integrated into a coherent representation of language structure. The brain networks responsible for these abilities are well known in adults, but not in young infants. Our results show that the neural architecture underlying these abilities is operational at birth. In three optical imaging studies, we found that the newborn brain detects identity relations, as evidenced by enhanced activation in the bilateral superior temporal and left inferior frontal regions. More importantly, the newborn brain can also determine whether such identity relations hold for the initial or final positions of speech sequences, as indicated by increased activity in the inferior frontal regions, possibly Broca's area. This implies that the neural foundations of language acquisition are in place from birth.

Journal ArticleDOI
TL;DR: High-resolution fMRI data suggests that, within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain.
Abstract: Emerging evidence suggests that motivation enhances episodic memory formation through interactions between medial-temporal lobe (MTL) structures and dopaminergic midbrain. In addition, recent theories propose that motivation specifically facilitates hippocampal associative binding processes, resulting in more detailed memories that are readily reinstated from partial input. Here, we used high-resolution fMRI to determine how motivation influences associative encoding and retrieval processes within human MTL subregions and dopaminergic midbrain. Participants intentionally encoded object associations under varying conditions of reward and performed a retrieval task during which studied associations were cued from partial input. Behaviorally, cued recall performance was superior for high-value relative to low-value associations; however, participants differed in the degree to which rewards influenced memory. The magnitude of behavioral reward modulation was associated with reward-related activation changes in dentate gyrus/CA2,3 during encoding and enhanced functional connectivity between dentate gyrus/CA2,3 and dopaminergic midbrain during both the encoding and retrieval phases of the task. These findings suggests that, within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain. Furthermore, within parahippocampal cortex and dopaminergic midbrain regions, activation associated with successful memory formation was modulated by reward across the group. During the retrieval phase, we also observed enhanced activation in hippocampus and dopaminergic midbrain for high-value associations that occurred in the absence of any explicit cues to reward. Collectively, these findings shed light on fundamental mechanisms through which reward impacts associative memory formation and retrieval through facilitation of MTL and ventral tegmental area/substantia nigra processing.

Journal ArticleDOI
TL;DR: The results indicate that proficiency can modulate ERP effects in both L1 and L2 learners, and for some measures (in this case, N400 amplitude), L1–L2 differences may be entirely accounted for by proficiency.
Abstract: We investigated the influence of English proficiency on ERPs elicited by lexical semantic violations in English sentences, in both native English speakers and native Spanish speakers who learned English in adulthood. All participants were administered a standardized test of English proficiency, and data were analyzed using linear mixed effects (LME) modeling. Relative to native learners, late learners showed reduced amplitude and delayed onset of the N400 component associated with reading semantic violations. As well, after the N400 late learners showed reduced anterior negative scalp potentials and increased posterior potentials. In both native and late learners, N400 amplitudes to semantically appropriate words were larger for people with lower English proficiency. N400 amplitudes to semantic violations, however, were not influenced by proficiency. Although both N400 onset latency and the late ERP effects differed between L1 and L2 learners, neither correlated with proficiency. Different approaches to dealing with the high degree of correlation between proficiency and native/late learner group status are discussed in the context of LME modeling. The results thus indicate that proficiency can modulate ERP effects in both L1 and L2 learners, and for some measures (in this case, N400 amplitude), L1-L2 differences may be entirely accounted for by proficiency. On the other hand, not all effects of L2 learning can be attributed to proficiency. Rather, the differences in N400 onset and the post-N400 violation effects appear to reflect fundamental differences in L1-L2 processing.

Journal ArticleDOI
TL;DR: The concept of attractor stability of prefrontal working memory networks is suggested to be a meaningful model for individual differences in cognitive stability versus flexibility and to quantify the individual dispositional cognitive flexibility in a theoretically motivated way.
Abstract: The pFC is critical for cognitive flexibility (i.e., our ability to flexibly adjust behavior to changing environmental demands), but also for cognitive stability (i.e., our ability to follow behavioral plans in the face of distraction). Behavioral research suggests that individuals differ in their cognitive flexibility and stability, and neurocomputational theories of working memory relate this variability to the concept of attractor stability in recurrently connected neural networks. We introduce a novel task paradigm to simultaneously assess flexible switching between task rules (cognitive flexibility) and task performance in the presence of irrelevant distractors (cognitive stability) and to furthermore assess the individual "spontaneous switching rate" in response to ambiguous stimuli to quantify the individual dispositional cognitive flexibility in a theoretically motivated way (i.e., as a proxy for attractor stability). Using fMRI in healthy human participants, a common network consisting of parietal and frontal areas was found for task switching and distractor inhibition. More flexible persons showed reduced activation and reduced functional coupling in frontal areas, including the inferior frontal junction, during task switching. Most importantly, the individual spontaneous switching rate antagonistically affected the functional coupling between inferior frontal junction and the superior frontal gyrus during task switching and distractor inhibition, respectively, indicating that individual differences in cognitive flexibility and stability are indeed related to a common prefrontal neural mechanism. We suggest that the concept of attractor stability of prefrontal working memory networks is a meaningful model for individual differences in cognitive stability versus flexibility.

Journal ArticleDOI
TL;DR: The results of the experiment and the accompanying model simulations illustrate the limits of feedforward vision and suggest that object recognition is better characterized as a highly interactive, dynamic process that depends on the coordination of multiple brain areas.
Abstract: Everyday vision requires robustness to a myriad of environmental factors that degrade stimuli. Foreground clutter can occlude objects of interest, and complex lighting and shadows can decrease the contrast of items. How does the brain recognize visual objects despite these low-quality inputs? On the basis of predictions from a model of object recognition that contains excitatory feedback, we hypothesized that recurrent processing would promote robust recognition when objects were degraded by strengthening bottom-up signals that were weakened because of occlusion and contrast reduction. To test this hypothesis, we used backward masking to interrupt the processing of partially occluded and contrast reduced images during a categorization experiment. As predicted by the model, we found significant interactions between the mask and occlusion and the mask and contrast, such that the recognition of heavily degraded stimuli was differentially impaired by masking. The model provided a close fit of these results in an isomorphic version of the experiment with identical stimuli. The model also provided an intuitive explanation of the interactions between the mask and degradations, indicating that masking interfered specifically with the extensive recurrent processing necessary to amplify and resolve highly degraded inputs, whereas less degraded inputs did not require much amplification and could be rapidly resolved, making them less susceptible to masking. Together, the results of the experiment and the accompanying model simulations illustrate the limits of feedforward vision and suggest that object recognition is better characterized as a highly interactive, dynamic process that depends on the coordination of multiple brain areas.

Journal ArticleDOI
TL;DR: It is found that damage to the mPFC abolished the self-reference effect and suggested that this structure is important for self-referential processing and the neural representation of self.
Abstract: Functional neuroimaging studies suggest that the medial PFC (mPFC) is a key component of a large-scale neural system supporting a variety of self-related processes. However, it remains unknown whether the mPFC is critical for such processes. In this study, we used a human lesion approach to examine this question. We administered a standard trait judgment paradigm [Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785-794, 2002] to patients with focal brain damage to the mPFC. The self-reference effect (SRE), a memory advantage conferred by self-related processing, served as a measure of intact self-processing ability. We found that damage to the mPFC abolished the SRE. The results demonstrate that the mPFC is necessary for the SRE and suggest that this structure is important for self-referential processing and the neural representation of self.

Journal ArticleDOI
TL;DR: This study highlights the contribution of hippocampal–prefrontal circuits to the early development of retrieval fluency in arithmetic problem solving and provides a novel framework for studying dynamic developmental processes that accompany children's development of problem-solving skills.
Abstract: Children's gains in problem-solving skills during the elementary school years are characterized by shifts in the mix of problem-solving approaches, with inefficient procedural strategies being gradually replaced with direct retrieval of domain-relevant facts. We used a well-established procedure for strategy assessment during arithmetic problem solving to investigate the neural basis of this critical transition. We indexed behavioral strategy use by focusing on the retrieval frequency and examined changes in brain activity and connectivity associated with retrieval fluency during arithmetic problem solving in second-and third-grade (7-to 9-year-old) children. Children with higher retrieval fluency showed elevated signal in the right hippocampus, parahippocampal gyrus (PHG), lingual gyrus (LG), fusiform gyrus (FG), left ventrolateral PFC (VLPFC), bilateral dorsolateral PFC (DLPFC), and posterior angular gyrus. Critically, these effects were not confounded by individual differences in problem-solving speed or accuracy. Psychophysiological interaction analysis revealed significant effective connectivity of the right hippocampus with bilateral VLPFC and DLPFC during arithmetic problem solving. Dynamic causal modeling analysis revealed strong bidirectional interactions between the hippocampus and the left VLPFC and DLPFC. Furthermore, causal influences from the left VLPFC to the hippocampus served as the main top-down component, whereas causal influences from the hippocampus to the left DLPFC served as the main bottom-up component of this retrieval network. Our study highlights the contribution of hippocampal-prefrontal circuits to the early development of retrieval fluency in arithmetic problem solving and provides a novel framework for studying dynamic developmental processes that accompany children's development of problem-solving skills.

Journal ArticleDOI
TL;DR: It is detected weak or no association between reversible sentence comprehension and the ventrolateral pFC, which includes Broca's area, even for syntactically complex sentences, which casts doubt on theories that presuppose a critical role for this region in syntactic computations.
Abstract: We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We hypothesize that this region plays an important role in the thematic or what-where processing of sentences. In contrast, we detected weak or no association between reversible sentence comprehension and the ventrolateral pFC, which includes Broca's area, even for syntactically complex sentences. This casts doubt on theories that presuppose a critical role for this region in syntactic computations.

Journal ArticleDOI
TL;DR: Individual variations in learning were observed, and these differences show that not all video game players benefit equally, either behaviorally or in terms of neural change.
Abstract: Playing a first-person shooter (FPS) video game alters the neural processes that support spatial selective attention. Our experiment establishes a causal relationship between playing an FPS game and neuroplastic change. Twenty-five participants completed an attentional visual field task while we measured ERPs before and after playing an FPS video game for a cumulative total of 10 hr. Early visual ERPs sensitive to bottom-up attentional processes were little affected by video game playing for only 10 hr. However, participants who played the FPS video game and also showed the greatest improvement on the attentional visual field task displayed increased amplitudes in the later visual ERPs. These potentials are thought to index top-down enhancement of spatial selective attention via increased inhibition of distractors. Individual variations in learning were observed, and these differences show that not all video game players benefit equally, either behaviorally or in terms of neural change.

Journal ArticleDOI
TL;DR: These results fit with existing models characterizing the dACC as a hub for monitoring ongoing behavior and motivating adjustments when necessary and further emphasize that such a function may be linked to the subjective experience of negative affect.
Abstract: A reliable observation in neuroimaging studies of cognitive control is the response of dorsal ACC (dACC) to events that demand increased cognitive control (e.g., response conflicts and performance errors). This observation is apparently at odds with a comparably reliable association of the dACC with the subjective experience of negative affective states such as pain, fear, and anxiety. Whereas "affective" associates of the dACC are based on studies that explicitly manipulate and/or measure the subjective experience of negative affect, the "cognitive" associates of dACC are based on studies using tasks designed to manipulate the demand for cognitive control, such as the Stroop, flanker, and stop-signal tasks. Critically, extant neuroimaging research has not systematically considered the extent to which these cognitive tasks induce negative affective experiences and, if so, to what extent negative affect can account for any variance in the dACC response during task performance. While undergoing fMRI, participants in this study performed a stop-signal task while regularly reporting their experience of performance on several dimensions. We observed that within-subject variability in the dACC response to stop-signal errors tracked changes in subjective frustration throughout task performance. This association remained when controlling for within-subject variability in subjective reports of cognitive engagement and several performance-related variables indexing task difficulty. These results fit with existing models characterizing the dACC as a hub for monitoring ongoing behavior and motivating adjustments when necessary and further emphasize that such a function may be linked to the subjective experience of negative affect.