scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Endocrinology in 2001"


Journal ArticleDOI
TL;DR: Findings indicate a modulatory role for PPARs in inflammation with potential therapeutical applications in chronic inflammatory diseases.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily. PPARalpha is highly expressed in liver, skeletal muscle, kidney, heart and the vascular wall. PPARgamma is predominantly detected in adipose tissue, intestine and macrophages. PPARs are activated by fatty-acid derivatives and pharmacological agents such as fibrates and glitazones which are specific for PPARalpha and PPARgamma respectively. PPARs regulate lipid and lipoprotein metabolism, glucose homeostasis, cell proliferation and differentiation, and apoptosis. PPARalpha controls intra- and extracellular lipid metabolisms whereas PPARgamma triggers adipocyte differentiation and promotes lipid storage. In addition, PPARs also modulate the inflammatory response. PPAR activators have been shown to exert anti-inflammatory activities in various cell types by inhibiting the expression of proinflammatory genes such as cytokines, metalloproteases and acute-phase proteins. PPARs negatively regulate the transcription of inflammatory response genes by antagonizing the AP-1, nuclear factor-kappaB (NF-kappaB), signal transducer and activator of transcription and nuclear factor of activated T-cells signalling pathways and by stimulating the catabolism of proinflammatory eicosanoids. These recent findings indicate a modulatory role for PPARs in inflammation with potential therapeutical applications in chronic inflammatory diseases.

750 citations


Journal ArticleDOI
TL;DR: A distinct hormonal profile characterized by hyperandrogenism rather than hypoestrogenism is associated with athletes engaged in sports emphasizing strength over leanness, and diagnosis should include careful screening for abnormal eating behavior.
Abstract: Women have become increasingly physically active in recent decades. While exercise provides substantial health benefits, intensive exercise is also associated with a unique set of risks for the female athlete. Hypothalamic dysfunction associated with strenuous exercise, and the resulting disturbance of GnRH pulsatility, can result in delayed menarche and disruption of menstrual cyclicity. Specific mechanisms triggering reproductive dysfunction may vary across athletic disciplines. An energy drain incurred by women whose energy expenditure exceeds dietary energy intake appears to be the primary factor effecting GnRH suppression in athletes engaged in sports emphasizing leanness; nutritional restriction may be an important causal factor in the hypoestrogenism observed in these athletes. A distinct hormonal profile characterized by hyperandrogenism rather than hypoestrogenism is associated with athletes engaged in sports emphasizing strength over leanness. Complications associated with suppression of GnRH include infertility and compromised bone density. Failure to attain peak bone mass and bone loss predispose hypoestrogenic athletes to osteopenia and osteoporosis. Metabolic aberrations associated with nutritional insult may be the primary factors effecting low bone density in hypoestrogenic athletes, thus diagnosis should include careful screening for abnormal eating behavior. Increasing caloric intake to offset high energy demand may be sufficient to reverse menstrual dysfunction and stimulate bone accretion. Treatment with exogenous estrogen may help to curb further bone loss in the hypoestrogenic amenorrheic athlete, but may not be sufficient to stimulate bone growth. Treatment aimed at correcting metabolic abnormalities may in fact prove more effective than that aimed at correcting estrogen deficiencies.

405 citations


Journal ArticleDOI
TL;DR: A mutation in the subdomain 3 of the kinase domain could result in an alteration in the expression and/or phosphorylation of SMADs, resulting in the phenotype characteristic of the Booroola animals which is the 'precocious' development of a large number of small antral follicles resulting in increased ovulation rate.
Abstract: Genetic variations in ovulation rate which occur in different breeds of sheep provide useful models to explore the mechanisms regulating the development of antral follicles. The Booroola gene, an autosomal mutation that affects ovulation rate, has been known for over two decades and despite intensive research it has not yet been identified. Using resources from human genome mapping and known data about gene linkage and chromosome location in the sheep, we selected the gene encoding the Bone Morphogenetic Protein receptor (BMPR) type 1 B (ALK-6) as a candidate site for the mutation. The BMPR1B gene in the human is located at the region linked with the Booroola mutation, syntenic to chromosome 6 in the sheep. A fragment of the sheep BMPR1B gene was cloned from an ovarian cDNA and the deduced aminoacid (AA) sequence is over 98% homologous to the known mammalian sequences. cDNA and genomic DNA from 20 Booroola genotypes were screened and two point mutation were found in the kinase domain of the receptor, one at base 746 of the coding region (A in the ++ to a G in FF animals) which results in a change from a glutamine in the wild type to a arginine in the Booroola animals. Another point mutation was identified at position 1113, (C to A) but this mutation does not change the coding aminoacid. The first mutation was confirmed in genomic DNA from 10 ewes from an independent Brazilian flock which segregates the Booroola phenotype. In all instances homozygous FecB gene carrier (n=11) had only the 746 A to G mutation, non gene carriers (n=14) had only the wild type sequence and heterozygote gene carriers (n=5) had both sequences. This mutation in the subdomain 3 of the kinase domain could result in an alteration in the expression and/or phosphorylation of SMADs, resulting in the phenotype characteristic of the Booroola animals which is the 'precocious' development of a large number of small antral follicles resulting in increased ovulation rate.

399 citations


Journal ArticleDOI
TL;DR: The energy deficit of periparturient cows causes a sustained reduction in plasma leptin, which could benefit early lactating dairy cows by promoting a faster increase in feed intake and by diverting energy from non-vital functions such as reproduction.
Abstract: Dairy cows suffer from an intense energy deficit at parturition due to the onset of copious milk synthesis and depressed appetite. Despite this deficit, maternal metabolism is almost completely devoted to the support of mammary metabolism. Evidence from rodents suggests that, during periods of nutritional insufficiency, a reduction in plasma leptin serves to co-ordinate energy metabolism. As an initial step to determine if leptin plays this role in periparturient dairy cows, changes in the plasma concentration of leptin were measured during the period from 35 days before to 56 days after parturition. The plasma concentration of leptin was reduced by approximately 50% after parturition and remained depressed during lactation despite a gradual improvement in energy balance; corresponding changes occurred in the abundance of leptin mRNA in white adipose tissue. To determine whether negative energy balance caused this reduction in circulating leptin, cows were either milked or not milked after parturition. Absence of milk removal eliminated the energy deficit of early lactation, and doubled the plasma concentration of leptin. The plasma concentration of leptin was positively correlated with plasma concentrations of insulin and glucose, and negatively correlated with plasma concentrations of growth hormone and non-esterified fatty acids. In conclusion, the energy deficit of periparturient cows causes a sustained reduction in plasma leptin. This reduction could benefit early lactating dairy cows by promoting a faster increase in feed intake and by diverting energy from non-vital functions such as reproduction.

334 citations


Journal ArticleDOI
TL;DR: Understanding of the molecular effects on immune responses of combinations of neuropeptides, neurohormones and neurotransmitters at all levels has opened up new therapeutic approaches and are essential for the design of future therapies based on such principles.
Abstract: Interactions between the immune and nervous systems play an important role in modulating host susceptibility and resistance to inflammatory disease. Neuroendocrine regulation of inflammatory and immune responses and disease occurs at multiple levels: systemically, through the anti-inflammatory action of glucocorticoids released via hypothalamic-pituitary-adrenal axis stimulation; regionally, through production of glucocorticoids within and sympathetic innervation of immune organs such as the thymus; locally, at sites of inflammation. Estrogens also play an important role in immune modulation, and contribute to the approximately 2- to 10-fold higher incidence of autoimmune/inflammatory diseases seen in females of all mammalian species. During inflammation, cytokines from the periphery activate the central nervous system through multiple routes. This results in stimulation of the hypothalamic-pituitary-adrenal axis which, in turn through the immunosuppressive effects of the glucocorticoids, generally inhibits inflammation. Recent studies indicate that physiological levels of glucocorticoids are immunomodulatory rather than solely immunosuppressive, causing a shift in patterns of cytokine production from a TH1- to a TH2-type pattern. Interruptions of this loop at any level and through multiple mechanisms, whether genetic, or through surgical or pharmacological interventions, can render an inflammatory resistant host susceptible to inflammatory disease. Over-activation of this axis, as occurs during stress, can also affect severity of infectious disease through the immunosuppressive effects of the glucocorticoids. These interactions have been clearly demonstrated in many animal models, across species, strains and diseases, and are also relevant to human inflammatory, autoimmune and allergic illnesses, including rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, allergic asthma and atopic skin disease. While many genes and environmental factors contribute to susceptibility and resistance to autoimmune/inflammatory diseases, a full understanding of the molecular effects on immune responses of combinations of neuropeptides, neurohormones and neurotransmitters at all levels has opened up new therapeutic approaches and are essential for the design of future therapies based on such principles.

288 citations


Journal ArticleDOI
TL;DR: Testosterone supplementation of HIV-infected men with low testosterone levels and of older men with normally low testosterone concentrations also increases muscle mass as discussed by the authors, however, it has not been shown to improve performance in endurance events.
Abstract: In spite of the widespread abuse of androgenic steroids by athletes and recreational body-builders, the effects of these agents on athletic performance and physical function remain poorly understood. Experimentally induced androgen deficiency is associated with a loss of fat-free mass; conversely, physiologic testosterone replacement of healthy, androgen-deficient men increases fat-free mass and muscle protein synthesis. Testosterone supplementation of HIV-infected men with low testosterone levels and of older men with normally low testosterone concentrations also increases muscle mass. However, we do not know whether physiologic testosterone replacement can improve physical function and health-related quality of life, and reduce the risk of falls and disability in older men or those with chronic illness. Testosterone increases maximal voluntary strength in a dose-dependent manner and thus might improve performance in power-lifting events. However, testosterone has not been shown to improve performance in endurance events. The mechanisms by which testosterone increases muscle mass are not known, but probably involve alterations in the expression of multiple muscle growth regulators.

267 citations


Journal ArticleDOI
TL;DR: An overview on the current knowledge of ALS protein and gene structure, organisation and regulation by hormones, and insights from novel animal models such as the ALS knockout mice are provided.
Abstract: The insulin-like growth factors-I and -II (IGFs) are involved in a wide array of cellular processes such as proliferation, prevention of apoptosis, and differentiation. Most of these effects are mediated by the IGF-I receptor, although at higher IGF concentrations the insulin receptor can also be activated. As the expression of both the IGFs and their receptors is widespread, IGFs are thought to have autocrine/paracrine modes of actions also, particularly during foetal life. The endocrine component of the IGF system is recognised to be important after birth, with IGF-I mediating many of the effects of growth hormone (GH), and linking anabolic processes to nutrient availability. Consideration of ligands and receptors, however, is insufficient to provide a complete understanding of the biology of IGF. This is because IGFs are found in binary complexes of 40-50 kDa with members of a family of IGF-binding proteins (IGFBPs-1 to -6) in all biological fluids. In addition, in postnatal serum, most IGFs are sequestered into ternary complexes of 150 kDa consisting of one molecule each of IGF, IGFBP-3 or IGFBP-5, and acid-labile subunit (ALS). Despite evidence that ALS plays an important role in the biology of circulating IGFs, it has received only limited attention relative to the other components of the IGF system. This review provides an overview on the current knowledge of ALS protein and gene structure, organisation and regulation by hormones, and insights from novel animal models such as the ALS knockout mice.

263 citations


Journal ArticleDOI
TL;DR: It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli, and may have implications for the role of the hippocampus and long-term potentiation in memory.
Abstract: Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure Evidence is presented that its role in memory may be ancillary to physiological regulation Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception') Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (eg long-term potentiation) could facilitate throughput inhibition This may have implications for the role of the hippocampus and long-term potentiation in memory

232 citations


Journal ArticleDOI
TL;DR: The results indicated that consumption of dietary phytoestrogens resulting in very high plasma isoflavone levels over a relatively short period can significantly alter body and prostate weight and plasma androgen hormone levels without affecting gonadotropin or testicular StAR levels.
Abstract: Nutritional factors, especially phytoestrogens, have been extensively studied for their potential beneficial effects against hormone-dependent and age-related diseases. The present study describes the short-term effects of dietary phytoestrogens on regulatory behaviors (food/water intake, locomotor activity and body weight), prostate weight, prostate 5-reductase enzyme activity, reproductive hormone levels, and testicular steroidogenic acute regulatory peptide (StAR) levels in adult Sprague‐Dawley rats. Animals were fed either a phytoestrogen-rich diet containing 600 µg/g isoflavones (as determined by HPLC) or a phytoestrogen-free diet. After 5 weeks of consuming these diets, plasma phytoestrogen levels were 35 times higher in animals fed the phytoestrogen-rich vs phytoestrogen-free diets. Body and prostate weights were significantly decreased in animals fed the phytoestrogenrich diet vs the phytoestrogen-free fed animals; however, no significant change in prostate 5-reductase enzyme activity was observed between the treatment groups. Locomotor activity levels were higher in the phytoestrogen-rich vs the phytoestrogen-free animals during the course of the treatment interval. Plasma testosterone and androstenedione levels were significantly lower in the animals fed the phytoestrogen-rich diet compared with animals fed the phytoestrogen-free diet. However, there were no significant differences in plasma LH or estradiol levels between the diet groups. Testicular StAR levels were not significantly different between the phytoestrogen-rich vs the phytoestrogen-free fed animals. These results indicated that consumption of dietary phytoestrogens resulting in very high plasma isoflavone levels over a relatively short period can significantly alter body and prostate weight and plasma androgen hormone levels without affecting gonadotropin or testicular StAR levels. The findings of this study identify the biological actions of phytoestrogens on male reproductive endocrinology and provide insights into the protective effects these estrogen mimics exert in male reproductive disorders such as benign prostatic hyperplasia and prostate cancer.

230 citations


Journal ArticleDOI
TL;DR: The concept that GH is an important modulator of female reproduction is the focus of this review.
Abstract: GH, as its name suggests, is obligatory for growth and development. It is, however, also involved in the processes of sexual differentiation and pubertal maturation and it participates in gonadal steroidogenesis, gametogenesis and ovulation. It also has additional roles in pregnancy and lactation. These actions may reflect direct endocrine actions of pituitary GH or be mediated by its induction of hepatic or local IGF-I production. However, as GH is also produced in gonadal, placental and mammary tissues, it may act in paracrine or autocrine ways to regulate local processes that are strategically regulated by pituitary GH. The concept that GH is an important modulator of female reproduction is the focus of this review.

215 citations


Journal ArticleDOI
TL;DR: It is demonstrated that endogenous estrogens decrease the fat content in female mice via ERalpha and not ER beta, demonstrating that ER alpha and ER beta exert opposing effects in the regulation of longitudinal bone growth.
Abstract: There are two known estrogen receptors, estrogen receptor-alpha (ER alpha) and estrogen receptor-beta (ER beta), which may mediate the actions of estrogen. The aim of the present study was to compare fat content, skeletal growth and adult bone metabolism in female mice lacking ER alpha (ERKO), ER beta (BERKO) or both ERs (DERKO). We demonstrate that endogenous estrogens decrease the fat content in female mice via ER alpha and not ER beta. Interestingly, the longitudinal bone growth was decreased in ERKO, increased in BERKO, but was intermediate in DERKO females, demonstrating that ER alpha and ER beta exert opposing effects in the regulation of longitudinal bone growth. The effects on longitudinal bone growth were correlated with similar effects on serum levels of IGF-I. A complex regulation of the trabecular bone mineral density (BMD), probably caused by a disturbed feedback regulation of estrogen and testosterone, was observed in female ER-inactivated mice. Nevertheless, a partial functional redundancy for ER alpha and ER beta in the maintenance of the trabecular BMD was observed in the female mice at 60 days of age. Thus, ER alpha and ER beta may have separate effects (regulation of fat), opposing effects (longitudinal bone growth) or partial redundant effects (trabecular BMD at 60 days of age), depending on which parameter is studied.

Journal ArticleDOI
TL;DR: Findings indicate that the relative proportions of immature and mature osteoblasts in the local microenvironment may control the degree of resorption at each specific bone site and suggest a possible mechanism for the recently proposed negative regulatory role of mature osteoblastasts on osteoclastogenesis.
Abstract: Osteoblast-osteoclast coordination is critical in the maintenance of skeletal integrity The modulation of osteoclastogenesis by immature cells of the osteoblastic lineage is mediated through receptor activator of NF kappaB (RANK), its ligand RANKL, and osteoprotegerin (OPG), a natural decoy receptor for RANKL. Here, the expression of OPG and RANKL in primary mouse osteoblastic cultures was investigated to determine whether the osteoclastogenic stimulus depended on the stage of osteoblastic differentiation and the presence of the calciotrophic hormone 1,25-dihydroxvitamin D-3 (1.25-(OH)(2)D-3). OPG mRNA expression was increased in osteoblastic cultures after the onset of mineralisation relative to less mature cultures, but did not alter in response to 1,25-(OH)(2)D-3 treatment. In contrast, basal RANKL mRNA expression did not change during differentiation but was significantly enhanced by 1,25-(OH)(2)D-3 treatment at all times. The stimulatory effects of 1,25-(OH)(2)D-3 on RANKL were lessened in more mature cultures, however. The RANKL/OPG ratio, an index of osteoclastogenic stimulus, was therefore increased by 1,25-(OH)(2)D-3 treatment at all stages of osteoblastic differentiation, but to a lesser degree in cultures after the onset of mineralisation. Thus the 1,25-(OH)(2)D-3-driven increase in osteoclastogenic potential of immature osteoblasts appears to be mediated by increased RANKL mRNA expression, with mature osteoblasts having relatively decreased osteoclastogenic activity due to increased OPG mRNA expression. These findings suggest a possible mechanism for the recently proposed negative regulatory role of mature osteoblasts on osteoclastogenesis and indicate that the relative proportions of immature and mature osteoblasts in the local microenvironment may control the degree of resorption at each specific bone site.

Journal ArticleDOI
TL;DR: Evidence is provided that the abnormal metabolic responses to meals taken at night during unadapted night shifts are due, at least in part, to a relative insulin resistance, which could contribute to the documented cardiovascular morbidity associated with shift work.
Abstract: The circadian rhythms of many night-shift workers are maladapted to their imposed behavioural schedule, and this factor may be implicated in the increased occurrence of cardiovascular disease (CVD) reported in shift workers. One way in which CVD risk could be mediated is through inappropriate hormonal and metabolic responses to meals. This study investigated the responses to standard meals at different circadian times in a group of night-shift workers on a British Antarctic Survey station at Halley Bay (75 degrees S) in Antarctica. Twelve healthy subjects (ten men and two women) were recruited. Their postprandial hormone and metabolic responses to an identical mixed test meal of 3330 kJ were measured on three occasions: (i) during daytime on a normal working day, (ii) during night-time at the beginning of a period of night-shift work, and (iii) during the daytime on return from night working to daytime working. Venous blood was taken for 9 h after the meal for the measurement of glucose, insulin, triacylglycerol (TAG) and non-esterified fatty acids. Urine was collected 4-hourly (longer during sleep) on each test day for assessment of the circadian phase via 6-sulphatoxymelatonin (aMT6s) assay. During normal daytime working, aMT6s acrophase was delayed (7.7+/-1.0 h (s.e.m.)) compared with that previously found in temperate zones in a comparable age-group. During the night shift a further delay was evident (11.8+/-1.9 h) and subjects' acrophases remained delayed 2 days after return to daytime working (12.4+/-1.8 h). Integrated postprandial glucose, insulin and TAG responses were significantly elevated during the night shift compared with normal daytime working. Two days after their return to daytime working, subjects' postprandial glucose and insulin responses had returned to pre-shift levels; however, integrated TAG levels remained significantly elevated. These results are very similar to those previously found in simulated night-shift conditions; it is the first time such changes have been reported in real shift workers in field conditions. They provide evidence that the abnormal metabolic responses to meals taken at night during unadapted night shifts are due, at least in part, to a relative insulin resistance, which could contribute to the documented cardiovascular morbidity associated with shift work. When applied to the 20% of the UK workforce currently employed on shift work, these findings have major significance from an occupational health perspective.

Journal ArticleDOI
TL;DR: The tight temporal control of tight junction permeability suggests that ovariectomy of the late pregnant mouse may be a good model for molecular studies of the lactogenic switch.
Abstract: Closure of the tight junctions of the mammary epithelium has been shown to accompany the onset of copious milk secretion or lactogenesis, stage 2, in both goats and humans. Here we use injection of [ 14 C]sucrose and FITC-albumin (fluorescein isothiocyanate-albumin) into the mammary duct to follow the course of tight junction closure during lactogenesis in mice. To examine the hormonal changes responsible, we ovariectomized day 16 or 17 pregnant mice and found that closure followed ovariectomy with a mean delay of 13·61·5 (...) h. That progesterone withdrawal is the trigger for closure was shown by the finding that injection of progesterone within 4 h of ovariectomy delayed closure and that closure occurred after injection of the progesterone antagonist RU 486 in intact late pregnant mice. Endocrine ablation studies showed that low to moderate concentrations of corticosterone and either placental lactogen or prolactin are necessary for tight junction closure triggered by progesterone withdrawal. Thus the hormonal requirements for tight junction closure are similar to those shown by other investigators to promote lactogenesis, stage 2. Further, the tight temporal control of tight junction permeability suggests that ovariectomy of the late pregnant mouse may be a good model for molecular studies of the lactogenic switch.

Journal ArticleDOI
TL;DR: The theory, application and limitations of techniques that allow temporo-spatial control of gene deletion or expression in transgenic animals are examined, with particular reference to endocrine research.
Abstract: Transgenic technology has been revolutionised by the development of techniques that allow temporo-spatial control of gene deletion or expression in transgenic animals. The ability to switch gene expression 'on' or 'off' in restricted tissues at specific times allows unprecedented flexibility for exploring gene function in both health and disease. As use of these techniques grows in all areas of biomedical research, an understanding of this topic is essential. In this review we examine the theory, application and limitations of these strategies, with particular reference to endocrine research.

Journal ArticleDOI
TL;DR: Circulating concentrations of leptin in sheep correlate with body fatness and are affected by level of food intake and photoperiod, but there was no evidence for a circadian rhythm of plasma leptin, but clear evidence for post-prandial peaks of low amplitude.
Abstract: Circulating concentrations of leptin in sheep correlate with body fatness and are affected by level of food intake and photoperiod. The present objective was to elucidate the short-term dynamics of leptin secretion. Frequent blood samples were taken over 48 h from 12 Soay rams after 16 weeks in short-day photoperiod (SD, 16 h darkness:8 h light) with freely available food, and then after 16 weeks in long days (16 h light:8 h darkness) with food freely available (LD) or restricted to 90% maintenance (LDR) (n=6/ group). During the second 24 h of sampling, half were food deprived (n=6, SD and LD) and half had their meal times shifted (n=6, SD and LDR). A homologous RIA was developed, using antibodies raised in chicken against recombinant ovine leptin, to measure plasma concentrations. Simultancous 24 h profiles of plasma insulin, glucose and non-esterified fatty acids (NEFA) were measured. Plasma leptin was higher in LD than SD, and in LD than LDR, associated with higher food intake, live-weight and body condition score (adiposity), but tended to be lower in LDR than SD, associated with lower food intake, liveweight and body condition score. There was no evidence for a circadian rhythm of plasma leptin, but clear evidence for post-prandial peaks of low amplitude (15-36%) 2-8 h after meals given at normal and shifted times. Complete food deprivation caused a dramatic fall in plasma leptin to basal levels within 24 h. There was a positive association of plasma leptin with plasma insulin, and negative association with NEFA, both between meals and during fasting. Thus, plasma leptin concentrations in sheep are sensitive to short-term changes in energy balance, as well as to long-term photoperiod-driven changes in food intake and adiposity.

Journal ArticleDOI
TL;DR: It is demonstrated that leptin concentrations change in response to reduced nutritional status, and that leptin has the ability to regulate multiple physiological processes in lambs, including both feed intake and secretion of GH.
Abstract: Leptin has been implicated in the regulation of feed intake, growth, and reproduction. The objective of this study was to determine if centrally administered leptin would affect feed intake and the secretion of growth hormone (GH) and luteinizing hormone (LH) in ewe lambs. Eighteen ewe lambs were ovariectomized and fitted with intracerebroventricular (i.c.v.) cannulae. Lambs were randomly assigned to receive either a maintenance diet (fed), or a diet that provided 38% of maintenance requirements (diet-restricted) for 14 weeks. Subsequently, recombinant ovine leptin or vehicle was continuously infused, via i.c.v. cannulae, in a linearly increasing dose for 8 days, reaching a maximum of 1·25 µg/kg per h. Feed intake was recorded on days 1 to 7. Blood was collected via jugular cannulae every 10 min for 4 h on days 0, 2, 4, 6 and 8 for the determination of serum leptin, insulin, LH and GH. Leptin suppressed feed intake in fed lambs on days 4 to 7 (P 0·25). Fed lambs had greater serum concentrations of leptin than diet-restricted lambs (P=0·007). Also, although not different on day 0 (pretreatment), on day 8 serum leptin concentrations were greater in leptin-treated lambs than in saline-treated lambs (P=0·003). Insulin was lower in diet-restricted than in fed lambs (P=0·003), but was not affected by leptin treatment (P=0·82). LH pulse frequencies were lower in dietrestricted lambs than in fed lambs (P=0·038), but were not affected by leptin treatment (P=0·85). Mean serum GH was greater in diet-restricted than in fed lambs (P 0·32). From this work, we propose that leptin represents an important functional link between adipose stores and hypothalamic function in ruminants. We demonstrate that leptin concentrations change in response to reduced nutritional status, and that leptin has the ability to regulate multiple physiological processes in lambs, including both feed intake and secretion of GH.

Journal ArticleDOI
TL;DR: The treatment of leptin was not sufficient to reduce plasma GH levels in the food-restricted animals, suggesting that other factors or mechanisms must be involved in the regulation of this axis.
Abstract: Leptin can act as a satiety factor and exert neuroendocrine effects, but most studies have been performed in fasted animals. We aimed to determine the effect of chronic under-nutrition on the response to a 3-day intracerebroventricular infusion of leptin with regard to food intake and the secretion of pituitary hormones. Ovariectomised ewes (n=6) had a mean (+/-s.e.m. ) bodyweight of 56+/-0.8 kg on a diet available ad libitum (ad lib) or 33.4+/-1 kg on a restricted diet. The differential bodyweight was achieved by dietary means over a period of 6 months prior to the commencement of the study. Leptin (4 microg/h) or vehicle (artificial cerebrospinal fluid (aCSF)) was infused into the third cerebral ventricle for 3 days. Blood samples were taken prior to commencement and on day 3 of infusion for the assay of plasma hormone levels. The experiment was repeated one week later in a cross-over design. Food intake and metabolic status were monitored daily. The luteinising hormone (LH) pulse amplitude was lower (P<0.05) but plasma growth hormone (GH) levels were higher (P<0.05) in the food-restricted animals. Plasma levels of glucose, lactate, insulin, urea and triglycerides were similar in the two groups but non-esterified fatty acid levels were higher (P<0.01) in the animals on an ad lib diet. Leptin reduced (P<0.05) food intake only in the animals fed an ad lib diet. Leptin increased (P<0.05) the secretion of LH in the food-restricted group only and increased (P<0.05) GH irrespective of bodyweight. In conclusion, leptin does not alter food intake in animals on a restricted diet but can increase the secretion of LH in the same animals. The treatment of leptin was not sufficient to reduce plasma GH levels in the food-restricted animals, suggesting that other factors or mechanisms must be involved in the regulation of this axis.

Journal ArticleDOI
TL;DR: This review examines some interesting new' histories of insulin and reviews current understanding of its physiological actions and synergy with GH in the regulation of metabolism and body composition and reviews the history of GH abuse.
Abstract: This review examines some interesting 'new' histories of insulin and reviews our current understanding of its physiological actions and synergy with GH in the regulation of metabolism and body composition. It reviews the history of GH abuse that antedates by many years the awareness of endocrinologists to its potent anabolic actions. Promising methods for detection of GH abuse have been developed but have yet to be sufficiently well validated to be ready for introduction into competitive sport. So far, there are two promising avenues for detecting GH abuse. The first uses immunoassays that can distinguish the isomers of pituitary-derived GH from the monomer of recombinant human GH. The second works through demonstrating circulating concentrations of one or more GH-sensitive substances that exceed the extremes of normal physiological variability. Both methods require blood rather than urine samples. The first method has a window of opportunity lasting about 24 h after an injection and is most suitable for 'out of competition' testing. The second method has reasonable sensitivity for as long as 2 weeks after the last injection of GH and is uninfluenced by extreme exercise and suitable for post-competition samples. This method has a greater sensitivity in men than in women. The specificity of both methods seems acceptably high but lawyers need to decide what level of scientific probability is needed to obtain a conviction. Both methods need further validation before implementation. Research work carried out as part of the fight against doping in sport has opened up a new and exciting area of endocrinology.

Journal ArticleDOI
TL;DR: The data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.
Abstract: Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.

Journal ArticleDOI
TL;DR: The increased epithelial immunostaining for both ER-alpha and ER-beta in BPH and PC suggests that the involvement of estrogen receptors in hyperplasia and cancer concerns mainly the epithelium.
Abstract: Two different estrogen receptors (ER-alpha and ER-beta) have been described, which are differentially involved in regulating the normal function of reproductive tissues. ER-alpha was considered for a long time to be the only estrogen receptor, and it has been detected in the stromal cells of the human prostate but not in the epithelium. To obtain new information about the differential effects of both receptor types, we have investigated their localization in normal prostates, benign prostatic hyperplasia (BPH), and prostatic cancer (PC) by immunohistochemistry, ELISA and Western blot. Epithelial immunostaining was absent in normal prostates and was present in BPH (10% of cells) and PC (80% of cells), whereas about 15% of stromal cells were positively immunostained for ER-alpha in the three types of prostatic specimens studied. Epithelial immunostaining for ER-beta was detected in normal prostates (13% of cells), BPH (30% of cells) and PC (79% of cells), whereas stromal immunostaining for ER-beta was absent in normal and hyperplastic prostates and was present in PC (12% of cells). The complementary presence of both receptor types in the normal prostate (ER-beta in the epithelium and ER-alpha in the stroma) might explain the mechanism of estrogen action in the development of BPH. The increased epithelial immunostaining for both ER-alpha and ER-beta in BPH and PC suggests that the involvement of estrogen receptors in hyperplasia and cancer concerns mainly the epithelium.

Journal ArticleDOI
TL;DR: Findings show that glucocorticoids programme hyperglycaemia through mechanisms that operate on the fetus or directly on the neonate, rather than via effects that alter maternal postnatal behaviour during the suckling period.
Abstract: In a previous study, we showed that exposure of rats to dexamethasone (Dex) selectively in late pregnancy produces permanent induction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression and hyperglycaemia in the adult offspring. The mechanisms by which glucocorticoids cause this programming are unclear but may involve direct actions on the fetus/neonate, or glucocorticoids may act indirectly by affecting maternal postnatal nursing behaviour. Using a cross-fostering paradigm, the present data demonstrate that switching the offspring at birth from Dex-treated dams to control dams does not prevent induction of PEPCK or hyperglycaemia. Similarly, offspring born to control dams but reared by Dex-treated dams from birth maintain normal glycaemic control. During the neonatal period, injection of saline per se was sufficient to cause exaggeration in adult offspring responses to an oral glucose load, with no additional effect from Dex. However, postnatal treatment with either saline or Dex did not alter hepatic PEPCK activity. Prenatal Dex permanently raised basal plasma corticosterone levels, but under stress conditions there were no differences in circulating corticosterone levels. Likewise, Dex-exposed rats had similar plasma catecholamine concentrations to control animals. These findings show that glucocorticoids programme hyperglycaemia through mechanisms that operate on the fetus or directly on the neonate, rather than via effects that alter maternal postnatal behaviour during the suckling period. The hyperglycaemic response does not appear to result from abnormal sympathoadrenal activity or hypothalamic-pituitary-adrenal response during stress.

Journal ArticleDOI
TL;DR: It has become clear that negative crosstalk between the GC receptor (GCR) and transcription factor AP-1 (Jun:Fos) underlie the anti-inflammatory and immunosuppressive activity of GC.
Abstract: More than a decade ago our view of gene regulation by glucocorticoids (GC) and other steroid hormones underwent a dramatic change with the discovery of negative crosstalk (transcriptional interference) between the GC receptor (GCR) and transcription factor AP- 1 (Jun:Fos). It was initially observed that induction of the collagenase type 1 gene, which is mediated through activation of AP-1 by growth factors and inflammatory cytokines, is repressed by GC. This repression was attributed to mutual negative interactions between AP-1 and GCR. Although the exact molecular mechanism underlying this particular case of transcriptional interference is yet to be determined, it has become clear that this and analogous interactions with other transcription factors (e.g. nuclear factor-κB) underlie the anti-inflammatory and immunosuppressive activity of GC. Recent studies conducted at the whole animal level indicate that the interactions between the AP-1 and GC signaling pathways are much more extensive. AP-1-related signaling via the Jun N-terminal kinases can lead to increased levels of circulating GC, which eventually down-modulate AP-1 activity via transcriptional interference. This negative feedback loop is likely to be of great importance for maintenance of homeostasis and regulation of stress responses, including acute and chronic inflammation.

Journal ArticleDOI
TL;DR: Results indicate that decreased expression of mRNAs encoding several up-stream elements in the steroidogenic pathway may contribute, at least partially, to leptin-induced inhibition of testicular steroidogenesis.
Abstract: Leptin, the product of the ob gene, is a pivotal signal in the regulation of neuroendocrine function and fertility. Although much of the action of leptin in the control of the reproductive axis is exerted at the hypothalamic level, some direct effects of leptin on male and female gonads have also been reported. Indeed, recent evidence demonstrated that leptin is able to inhibit testosterone secretion at the testicular level. However, the molecular mechanisms behind this effect remain unclear. The focus of this study was twofold: (1) to identify potential targets for leptin-induced inhibition of steroidogenesis, and (2) to characterize in detail the pattern of expression and cellular distribution of leptin receptor (Ob-R) mRNA in adult rat testis. In pursuit of the first goal, slices of testicular tissue from adult rats were incubated with increasing concentrations of recombinant leptin (10(-9)--10(-7 )M) in the presence of human chorionic gonadotropin (hCG; 10 IU/ml). In this setting, testosterone secretion in vitro was monitored, and expression levels of mRNAs encoding steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450 scc) and 17 beta-hydroxysteroid dehydrogenase type III (17 beta-HSD) were assessed by Northern hybridization. In pursuit of the second goal, the pattern of cellular expression of the Ob-R gene in adult rat testis was evaluated by in situ hybridization using a riboprobe complementary to all Ob-R isoforms. In addition, testicular expression levels of the different Ob-R isoforms, previously identified in the hypothalamus, were analyzed by means of semi-quantitative RT-PCR. In keeping with our previous data, recombinant leptin significantly inhibited hCG-stimulated testosterone secretion. In this context, leptin, in a dose-dependent manner, was able to co-ordinately decrease the hCG-stimulated expression levels of SF-1, StAR and P450 scc mRNAs, but it did not affect those of 17 beta-HSD type III. In situ hybridization analysis showed a scattered pattern of cellular expression of the Ob-R gene within the adult rat testis, including Leydig and Sertoli cells. In addition, assessment of the pattern of expression of Ob-R subtypes revealed that the long Ob-Rb isoform was abundantly expressed in adult rat testis. However, variable levels of expression of Ob-Ra, Ob-Re, and Ob-Rf mRNAs were also detected, whereas those of the Ob-Rc variant were nearly negligible. In conclusion, our results indicate that decreased expression of mRNAs encoding several up-stream elements in the steroidogenic pathway may contribute, at least partially, to leptin-induced inhibition of testicular steroidogenesis. In addition, our data on the pattern of testicular expression of Ob-R isoforms and cellular distribution of Ob-R mRNA may help to further elucidate the molecular mechanisms of leptin action in rat testis.

Journal ArticleDOI
TL;DR: This up-to-date profile of the human TG molecule presents the features of importance for its complex role in thyroid hormonogenesis, and is the basis for future studies on the structure--function relationship.
Abstract: The coding region of the human thyroglobulin (TG) mRNA has been resequenced, and comparison with the TG sequence originally published in 1987 showed many variations. All of the variations were validated in 20--40 other alleles, and this resulted in the revision of 41 nucleotide positions. This review presents the revised wild-type human TG sequence, including all known exon/exon boundaries and additional data on the TG mRNA population, concerning alternative splicing and variability of the polyadenylation cleavage site. The amino acid sequence derived shows one additional, 12 changed, and 10 polymorphic residues. Protein characteristics, such as acceptor and donor tyrosine residues, N-glycosylation sites, cysteine-rich repeats, the proposed receptor domain, and antigenic epitopes, are included, and their relationship to the revised sequence is discussed. Furthermore, all reported TG mutations causing dyshormonogenesis in humans and animals are designated in the nucleotide and amino acid sequences. This up-to-date profile of the human TG molecule presents the features of importance for its complex role in thyroid hormonogenesis, and is the basis for future studies on the structure--function relationship.

Journal ArticleDOI
TL;DR: High and low growth rates were respectively associated with high and low IGF-I and -II levels, supporting the hypothesis of a stimulatory role for both IGFs during post-hatching growth of chickens.
Abstract: Insulin-like growth factors (IGFs) stimulate growth rate in a number of animal species and are likely to contribute to genetic variations of growth potential. The present study was designed to link levels of IGF-I and IGF-II mRNA and peptides with growth rate in divergently selected genotypes of chickens with high (HG) or low (LG) growth rates. Circulating IGF-I and -II and hepatic mRNA levels were measured under ad libitum feeding conditions from 1 to 12 weeks of age, and at 6 weeks of age under three different nutritional conditions (fed, fasted for 16 or 48 h, re-fed for 4 or 24 h after a 48-h fast). IGF binding proteins (IGFBPs) were also measured. Circulating IGFs increased with age and were higher in HG chickens from 1 to 6 weeks. They decreased with fasting and only IGF-II was fully restored after 24 h of re-feeding, while IGF-I remained low. A significant decrease in steady state IGF-I mRNA levels was also observed with fasting. Across the nutritional study, hepatic IGF-I mRNAs were significantly higher in HG chickens. Variations of IGF-II mRNA levels with nutritional state or genotype exhibited a similar trend. IGFBP (28, 34 and 40 kDa) levels increased with age, while only faint differences were observed between genotypes. IGFBP-28 transiently increased with fasting and was inversely related to blood glucose and insulin levels, suggesting that it is equivalent to mammalian IGFBP-1. In HG chickens, IGFBP-28 and IGFBP-34 levels decreased markedly following re-feeding. Therefore, high and low growth rates were respectively associated with high and low IGF-I and -II levels, supporting the hypothesis of a stimulatory role for both IGFs during post-hatching growth of chickens.

Journal ArticleDOI
TL;DR: In this particular ovine model, hyperleptinaemia was not observed during late pregnancy, and circulating leptin concentrations reflected increased levels of leptin secretion by adipose tissue primarily as a result of the increase in body fat deposition, due to overfeeding.
Abstract: This study examined the pattern of circulating leptin in age-matched sheep during adolescent pregnancy, and its relationship with maternal dietary intake, body composition and tissue expression of the leptin gene. Overfeeding the adolescent pregnant ewe results in rapid maternal growth at the expense of the placenta, leading to growth restriction in the fetus, compared with normal fed controls. Our results demonstrate that, in the adolescent ewe, overfeeding throughout pregnancy was associated with higher maternal leptin concentrations, when compared with moderately fed controls (P<0.05), with no peak in circulating leptin towards the end of pregnancy. There was a close correlation between indices of body composition and circulating leptin levels at day 104 of gestation and at term (P<0.03). Further, when the dietary intake was switched from moderate to high, or high to moderate, at day 50 of gestation, circulating leptin levels changed rapidly, in parallel with the changes in dietary intake. Leptin mRNA levels and leptin protein in perirenal adipose tissue samples, taken at day 128 of gestation, were higher in overfed dams (P<0.04), suggesting that adipose tissue was the source of the increase in circulating leptin in the overnourished ewes. Leptin protein was also detected in placenta but leptin gene expression was negligible. However, leptin receptor gene expression was detected in the ovine placenta, suggesting that the placenta is a target organ for leptin. A negative association existed between maternal circulating leptin and fetal birth weight, placental/cotyledon weight and cotyledon number. In conclusion, in this particular ovine model, hyperleptinaemia was not observed during late pregnancy. Instead, circulating leptin concentrations reflected increased levels of leptin secretion by adipose tissue primarily as a result of the increase in body fat deposition, due to overfeeding. However, there appears to be a direct effect of overfeeding, particularly in the short term. In the nutritional switch-over study, circulating leptin concentrations changed within 48 h of the change in dietary intake. The presence of leptin protein and leptin receptor gene expression in the placenta suggests that leptin could be involved in nutrient partitioning during placental and/or fetal development.

Journal ArticleDOI
TL;DR: High mammary IGFR-1 mRNA during lactation suggests a role for peripheral IGF-I in maintenance of lactation, and locally produced IGF- I and -II may mediate mammogenesis.
Abstract: To study the involvement of the IGFs in mammary development and lactation of the cow, the temporal expressions of IGF-I and -II, its receptor type 1 (IGFR-1), IGF-binding proteins (IGFBPs)-1 to -6 and GH receptor (GHR) mRNA were examined. This was carried out for different stages of mammogenesis, lactogenesis, galactopoiesis and involution in the bovine mammary gland of 26 animals. Furthermore, IGF-I was localised by immunohistochemistry. The highest mRNA concentrations for IGF-I were detected in the mammary tissue of late pregnant heifers (days 255-272) and significantly lower expression was detected during lactogenesis and galactopoiesis. Immunohistochemistry of IGF-I revealed only a weak staining in the epithelium of the ducts during mammogenesis. The epithelium of the alveoli were negative during mammogenesis, lactogenesis and galactopoiesis but displayed distinct IGF-I activity during involution. In the stroma a distinct staining of the cytoplasm of adipocytes and of vascular smooth muscle cells was observed. A certain percentage of fibroblasts (usually 20-30%) were also immunopositive. In contrast, highest expression for IGFR-1 was detected during galactopoiesis and involution. The lowest mRNA concentration for IGFR-1 was found during pregnancy (days 194-213). In general, the expression of IGF-II was not regulated during mammogenesis and lactation, but decreased during involution. The mRNA for the six binding proteins was detected in the bovine mammary gland. The dominant binding proteins were IGFBP-3 and -5. The highest expression of IGFBP-3 was observed during mid-pregnancy and the lowest during late lactation, involution and in non-pregnant heifers. The mRNA for IGFBP-5 increased during late mammogenesis and lactogenesis followed by a decrease thereafter. In general, the mRNA concentrations for IGFBP-2, -4 and -6 were barely detectable during all stages. In contrast, the expression for IGFBP-1 was upregulated in the mammary gland of virgin heifers and increased around the onset of lactation. mRNA for GHR was found during all stages examined without outstanding fluctuations. In conclusion, locally produced IGF-I and -II may mediate mammogenesis. The high mammary IGFR-1 mRNA during lactation suggests a role for peripheral IGF-I in maintenance of lactation. The role of IGFBPs in the mammary gland needs further evaluation.

Journal ArticleDOI
TL;DR: Results suggested that targeted disruption of Cyp19 caused anovulation and precocious depletion of ovarian follicles, although it did not restore the defect in ovulation, and analysis of mice supplemented with E(2) demonstrated that E( 2) apparently supports development of ovarian granulocytes, although the defect did not recover.
Abstract: Aromatase P450 (CYP19) is an enzyme catalysing the conversion of androgens into oestrogens. We generated mice lacking aromatase activity (ArKO) by targeted disruption of Cyp19 and report the characteristic features of the ArKO ovaries and uteri as revealed by histological and biochemical analyses. ArKO females were totally infertile but there were as many developing follicles in their ovaries at 8 weeks of age as in wild-type ovaries. Nevertheless, no typical corpus luteum was observed in the ArKO ovaries. Electron microscopy revealed the presence of well-developed smooth endoplasmic reticulum, few lipid droplets and mitochondria with less organized tubular structures in the ArKO luteinized interstitial cells. These ultrastructural features were different from those of the wild-type interstitial cells, where there are many lipid droplets and mitochondria with well-developed tubular structures, characteristic of steroid-producing cells. When ArKO mice were supplemented with 17beta-oestradiol (E(2); 15 microg/mouse) every fourth day from 4 weeks of age for 1 month, increased numbers of follicles were observed in the ovaries as compared with those of untreated ArKO mice, although no typical corpus luteum was detectable. Ultrastructural analysis revealed the disappearance of the accumulated smooth endoplasmic reticulum in the luteinized interstitial cells after E(2 )supplementation. Transcripts of pro-apoptotic genes such as p53 and Bax genes were markedly elevated in the ArKO ovaries as compared with those of wild-type mice. Although E(2) supplementation did not cause suppression of the elevated expression of p53 and Bax mRNAs, it caused marked enhancement of expression levels of lactoferrin and progesterone receptor mRNAs in the uteri as well as increases in uterine wet weight. At 8 months of age, ArKO mice developed haemorrhages in the ovaries, in which follicles were nearly depleted, while age-matched wild-type females still had many ovarian follicles. Furthermore, macrophage-like cells were occasionally observed in the ArKO ovarian follicles. These results suggested that targeted disruption of Cyp19 caused anovulation and precocious depletion of ovarian follicles. Additionally, analysis of mice supplemented with E(2) demonstrated that E(2) apparently supports development of ovarian follicles, although it did not restore the defect in ovulation.

Journal ArticleDOI
TL;DR: This view of Leydig cell development is in accord with the well-known triphasic history of testosterone production, i.e. peaks at 14-18 weeks of fetal life, 2-3 months after birth, and from puberty throughout adult life.
Abstract: Leydig cell development in humans, although for years described as being biphasic, with fetal and adult phases of maturation, is better considered as a triphasic developmental phenomenon. The morphological literature is summarized in this commentary. Although the majority of studies are of a qualitative nature and many questions remain as to the relative and absolute numbers of cells involved in these developmental phases, this literature is more consistent with a triphasic developmental pattern. This view of Leydig cell development is in accord with the well-known triphasic history of testosterone production, i.e. peaks at 14-18 weeks of fetal life, 2-3 months after birth, and from puberty throughout adult life. It is also significant that the neonatal phase of testosterone production is dependent upon reactivation of the hypothalamic-pituitary-testicular axis (HPT). The current interest in the functional implications of the neonatal period will be better served by considering human Leydig cell development as triphasic.