scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Industrial Microbiology & Biotechnology in 1999"


Journal ArticleDOI
TL;DR: Many techniques are available in the fermentation medium designer’s toolbox (borrowing, component swapping, biological mimicry, one-at-a-time, statistical and mathematical techniques—experimental design and optimization), and considerable advantage can be gained by logical application of the techniques, combined with good experimental design.
Abstract: Many techniques are available in the fermentation medium designer’s toolbox (borrowing, component swapping, biological mimicry, one-at-a-time, statistical and mathematical techniques—experimental design and optimization, artificial neural networks, fuzzy logic, genetic algorithms, continuous fermentation, pulsed batch and stoichiometric analysis). Each technique has advantages and disadvantages, and situations where they are best applied. No one ‘magic bullet’ technique exists for all situations. However, considerable advantage can be gained by logical application of the techniques, combined with good experimental design.

289 citations


Journal ArticleDOI
TL;DR: Recombinant DNA engineering was combined with mutant selection and fermentation improvement to develop a strain of Bacillus subtilis that produces commercially attractive levels of riboflavin.
Abstract: Recombinant DNA engineering was combined with mutant selection and fermentation improvement to develop a strain of Bacillus subtilis that produces commercially attractive levels of riboflavin The B subtilis riboflavin production strain contains multiple copies of a modified B subtilis riboflavin biosynthetic operon (rib operon) integrated at two different sites in the B subtilis chromosome The modified rib operons are expressed constitutively from strong phage promoters located at the 5′ end and in an internal region of the operon The engineered strain also contains purine analog-resistant mutations designed to deregulate the purine pathway (GTP is the precursor for riboflavin), and a riboflavin analog-resistant mutation in ribC that deregulates the riboflavin biosynthetic pathway

187 citations


Journal ArticleDOI
TL;DR: A bacterium identified as Proteus mirabilis was isolated from acclimated sludge from a dyeing wastewater treatment plant and exhibited a remarkable color removal capability, even at a high concentration of azo dye.
Abstract: A bacterium identified as Proteus mirabilis was isolated from acclimated sludge from a dyeing wastewater treatment plant. This strain rapidly decolorized a deep red azo dye solution (RED RBN). Features of the decolorizing process related to biodegradation and biosorption were also studied. Although P. mirabilis displayed good growth in shake culture, color removal was best in anoxic static cultures. For color removal, the optimal pH and temperature were 6.5–7.5 and 30–35°C, respectively. The organism exhibited a remarkable color removal capability, even at a high concentration of azo dye. More than 95% of azo dye was reduced within 20 h at a dye concentration of 1.0 g L−1. Decolorization appears to proceed primarily by enzymatic reduction associated with a minor portion, 13–17%, of biosorption to inactivated microbial cells.

184 citations


Journal ArticleDOI
TL;DR: The unique degradation pathway of γ-HCH in UT26 is revealed and it is revealed that LinA and LinB are localized in the periplasmic space of UT26.
Abstract: γ-Hexachlorocyclohexane (γ-HCH; also called BHC or lindane) is one of the highly chlorinated pesticides which can cause serious environmental problems. Sphingomonas paucimobilis UT26 degrades γ-HCH under aerobic conditions. The unique degradation pathway of γ-HCH in UT26 is revealed. In the upstream pathway, γ-HCH is transformed to 2,5-dichlorohydroquinone (2,5-DCHQ) by two different dehalogenases (LinA and LinB) and one dehydrogenase (LinC) which are expressed constitutively. In the downstream pathway, 2,5-DCHQ is reductively dehalogenated, and then ring-cleaved by enzymes (LinD and LinE, respectively) whose expressions are regulated. We have cloned and sequenced five structural genes (linA, linB, linC, linD, and linE) directly involved in this degradation pathway. The linD and linE genes form an operon, and its expression is positively regulated by the LysR-type transcriptional regulator (LinR). The genes linA, linB, and linC are constitutively expressed, and are present separately from each other in the UT26 genome. Cell fractionation analysis, Western blotting, and immuno electron microscopy revealed that LinA and LinB are localized in the periplasmic space of UT26.

176 citations


Journal ArticleDOI
TL;DR: The state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine, is summarized.
Abstract: This review article summarizes the state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine. Both basic and practical aspects related to the metabolism of this microorganism and malolactic fermentation in general are critically reviewed. The former examines the role of genetics for the identification and classification of L. oenos and energetic mechanisms on solute transport (malic and lactic acid). The latter includes practical information on biomass production, optimal growth conditions and stress factors, which are important in growth optimization of malolactic starter cultures. Extensive data and references on the effect of malolactic fermentation on wine composition and sensory analysis are also included.

153 citations


Journal ArticleDOI
TL;DR: Differences in the chemotaxonomic characteristics demonstrate that the analyses of these low molecular weight cell compounds are suitable for classification of sphingomonads.
Abstract: Based on published results and investigations done for this study, chemotaxonomic characteristics of all validly described species of the genus Sphingomonas, as well as unnamed strains of this genus and related genera such as Rhizomonas and Blastomonas, are presented. All representatives of this group, here designated as sphingomonads, contain ubiquinone (Q-10). The two different polyamine patterns characterized either by the predominant polyamine sym-homospermidine or spermidine separate the sphingomonads into two major groups. Complex polar lipid profiles were found in sphingomonads in addition to the characteristic compound sphingoglycolipid. Identical profiles were found only in a few phylogenetically highly related species. Common to all sphingomonads is a fatty acid composition with 2-hydroxy fatty acids (14:0 2OH in all currently recognized species) and the lack of 3-hydroxy acids, which distinguishes them from taxa outside this group. Qualitative and quantitative differences in the fatty acid compositions, in several cases, were also suitable for identification at the species level. Thus, the differences in the chemotaxonomic characteristics demonstrate that the analyses of these low molecular weight cell compounds are suitable for classification of sphingomonads.

144 citations


Journal ArticleDOI
TL;DR: Using a model system, the activities of β-glucosidase activity was determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Pichia, Saccharomyces, Torulaspora and Brettanomyces; and seven strains of the bacterium Leuconostoc oenos.
Abstract: Using a model system, the activities of α-L-arabinofuranosidase, β-glucosidase, and α-L-rhamonopyranosidase were determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Saccharomyces, Torulaspora and Brettanomyces (10 strains); and seven strains of the bacterium Leuconostoc oenos. Only one Saccharomyces strain exhibited β-glucosidase activity, but several non-Saccharomyces yeast species showed activity of this enzyme. Aureobasidium pullulans hydrolyzed α-L-arabinofuranoside, β-glucoside, and α-L-rhamnopyranoside. Eight Brettanomyces strains had β-glucosidase activity. Location of enzyme activity was determined for those species with enzymatic activity. The majority of β-glucosidase activity was located in the whole cell fraction, with smaller amounts found in permeabilized cells and released into the growth medium. Aureobasidium pullulans hydrolyzed glycosides found in grapes.

117 citations


Journal ArticleDOI
TL;DR: After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than thatBy B. subtilis FDB-29, a recombinant strain, and control of pH is not necessary.
Abstract: PWD-1, the parent strain, and B. subtilis FDB-29, a recombinant strain. In both strains, keratinase was induced by proteinaceous media, and repressed by carbohydrates. A seed culture of B. licheniformis PWD-1 at early age, 6–10 h, is crucial to keratinase production during fermentation, but B. subtilis FDB-29 is insensitive to the seed culture age. During the batch fermentation by both strains, the pH changed from 7.0 to 8.5 while the keratinase activity and productivity stayed at high levels. Control of pH, therefore, is not necessary. The temperature for maximum keratinase production is 37°C for both strains, though B. licheniformis is thermophilic and grows best at 50°C. Optimal levels of dissolved oxygen are 10% and 20% for B. licheniformis and B. subtilis respectively. A scale-up procedure using constant temperature at 37°C was adopted for B. subtilis. On the other hand, a temperature-shift procedure by which an 8-h fermentation at 50°C for growth followed by a shift to 37°C for enzyme production was used for B. licheniformis to shorten the fermentation time and increase enzyme productivity. Production of keratinase by B. licheniformis increased by ten-fold following this new procedure. After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than that by B. subtilis FDB-29.

116 citations


Journal ArticleDOI
TL;DR: This is the first report of an antimicrobial produced in a biofilms for in vivo applications and represents the first application of a beneficial, genetically-engineered biofilm for combating corrosion.
Abstract: To identify novel, less-toxic compounds capable of inhibiting sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris and Desulfovibrio gigas in suspension cultures were exposed to several antimicrobial peptides. The bacterial peptide antimicrobials gramicidin S, gramicidin D, and polymyxin B as well as the cationic peptides indolicidin and bactenecin from bovine neutrophils decreased the viability of both SRB by 90% after a 1-h exposure at concentrations of 25–100 μg ml−1. To reduce corrosion by inhibiting SRB in biofilms, the genes for indolicidin and bactenecin were expressed in Bacillus subtilisBE1500 and B. subtilis WB600 under the control of the constitutive alkaline protease (apr) promoter, and the antimicrobials were secreted into the culture medium using the apr signal sequence. Bactenecin was also synthesized and expressed as a fusion to the pro-region of barnase from Bacillus amyloliquefaciens. Concentrated culture supernatants of B. subtilis BE1500 expressing bactenecin at 3 μg ml−1 decreased the viability of Escherichia coli BK6 by 90% and the reference SRB D. vulgaris by 83% in suspension cultures. B. subtilis BE1500 and B. subtilis WB600 expressing bactenecin in biofilms also inhibited the SRB-induced corrosion of 304 stainless steel six to 12-fold in continuous reactors as evidenced by the lack of change in the impedance spectra (resistance polarization) upon addition of SRB and by the reduction in hydrogen sulfide and iron sulfide in batch fermentations with mild steel. A 36-fold decrease in the population of D. vulgaris in a B. subtilis BE1500 biofilm expressing bactenecin was also observed. This is the first report of an antimicrobial produced in a biofilm for in vivo applications and represents the first application of a beneficial, genetically-engineered biofilm for combating corrosion.

115 citations


Journal ArticleDOI
TL;DR: Both enzymatic activities of RibA, the 3,4-dihydroxy-2-butanone 4-phosphate synthase activity located in the N-terminal half of the protein and the GTP cyclohydrolase II activity of the C- terminal domain, are necessary for the improved riboflavin productivity.
Abstract: One of the proteins encoded by the riboflavin operon of Bacillus subtilis, RibA, was identified as the rate limiting enzyme in an industrial riboflavin producing strain. An additional single copy of the ribA gene was introduced into the sacB locus of the riboflavin production strain and was expressed constitutively from the medium strength vegI promoter. This led to improved riboflavin titers and yields of riboflavin on glucose of up to 25%. Both enzymatic activities of RibA, the 3,4-dihydroxy-2-butanone 4-phosphate synthase activity located in the N-terminal half of the protein and the GTP cyclohydrolase II activity of the C-terminal domain, are necessary for the improved riboflavin productivity.

110 citations


Journal ArticleDOI
TL;DR: In this article, a bioreactor with a perforated float for carrying solid substrate and induced inoculum was used for the synthesis of tannase vis-a-vis gallic acid.
Abstract: Bioconversion of tannin to gallic acid from powder of teri pod (Caesalpinia digyna) cover was achieved by the locally isolated fungus, Rhizopus oryzae, in a bioreactor with a perforated float for carrying solid substrate and induced inoculum. Modified Czapek-Dox medium, put beneath the perforated float, with 2% tannic acid at pH 4.5, temperature 32°C, 93% relative humidity, incubated for 3 days with 3-day-old inoculum was optimum for the synthesis of tannase vis-a-vis gallic acid production. Conversion of tannin to gallic acid was 90.9%. Diethyl ether was used as the solvent for extraction of gallic acid from the fermented biomass.

Journal ArticleDOI
TL;DR: The biofilm attached to stainless steel was comprised of a mixed bacterial flora including Acinetobacter sp, Pseudomonas spp, Methylobacterium sp, and Corynebacterium/Arthrobacter spp.
Abstract: There is considerable interest in both Europe and the USA in the effects of microbiological fouling on stainless steels in potable water. However, little is known about the formation and effects of biofilms, on stainless steel in potable water environments, particularly in turbulent flow regimes. Results are presented on the development of biofilms on stainless steel grades 304 and 316 after exposure to potable water at velocities of 0.32, 0.96 and 1.75 m s−1. Cell counts on slides of stainless steel grades 304 and 316 with both 2B (smooth) and 2D (rough) finishes showed viable and total cell counts were higher at the higher flow rates of 0.96 and 1.75 m s−1, compared to a flow rate of 0.32 m s−1. Extracellular polysaccharide levels were not significantly different (P< 0.05) between each flow rate on all stainless steel surfaces studied. higher levels were found at the higher water velocities. the biofilm attached to stainless steel was comprised of a mixed bacterial flora including Acinetobacter sp, Pseudomonas spp, Methylobacterium sp, and Corynebacterium/Arthrobacter spp. Epifluorescence microscopy provided evidence of rod-shaped bacteria and the formation of stands, possibly of extracellular material attached to stainless steel at high flow rates but not at low flow rates.

Journal ArticleDOI
TL;DR: The genetic and biochemical features of the S. paucimobilis SYK-6 genes involved in degradation of lignin-related compounds are described and two unique etherases are involved in the reductive cleavage of β-aryl ether.
Abstract: SYK-6 is able to grow on a wide variety of dimeric lignin compounds. These compounds are degraded via vanillate and syringate by a unique enzymatic system, composed of etherases, O demethylases, ring cleavage oxygenases and side chain cleaving enzymes. These unique and specific lignin modification enzymes are thought to be powerful tools for utilization of the most abundant aromatic biomass, lignin. Here, we focus on the genes and enzymes involved in β-aryl ether cleavage and biphenyl degradation. Two unique etherases are involved in the reductive cleavage of β-aryl ether. These two etherases have amino acid sequence similarity with the glutathione S-transferases, and use glutathione as a hydrogen donor. It was found that 5,5′-dehydrodivanillate, which is a typical lignin-related biphenyl structure, was transformed into 5-carboxyvanillate by the reaction sequence of O-demethylation, meta-ring cleavage, and hydrolysis, and the genes involved in the latter two reactions have been characterized. Vanillate and syringate are the most common intermediate metabolites in lignin catabolism. These compounds are initially O-demethylated and the resulting diol compounds, protocatechuate (PCA) and 3-O-methylgallate, respectively, are subjected to ring cleavage catalyzed by PCA 4,5-dioxygenase. The ring cleavage products generated are further degraded through the PCA 4,5-cleavage pathway. We have isolated and characterized genes for enzymes involved in this pathway. Disruption of a gene for 2-pyrone-4,6-dicarboxylate hydrolase (ligI) in this pathway suggested that an alternative route for 3-O-methylgallate degradation, in which ligI is not involved, would play a role in syringate catabolism. In this article, we describe the genetic and biochemical features of the S. paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. A possible application of the SYK-6 lignin degradation system to produce a valuable chemical material is also described.

Journal ArticleDOI
TL;DR: These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation.
Abstract: Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation.

Journal ArticleDOI
TL;DR: Sphingomonas sp strain 1CX was isolated from a wastewater treatment plant and is capable of aerobically degrading a suite of azo dyes, using them as a sole source of carbon and nitrogen, and is related to, but distinct from, other azo dye-decolorizing Sphingomonal strains isolated previously from the same wastewater treatment facility.
Abstract: Sphingomonas sp strain 1CX was isolated from a wastewater treatment plant and is capable of aerobically degrading a suite of azo dyes, using them as a sole source of carbon and nitrogen. All azo dyes known to be decolorized by strain 1CX (Orange II, Acid Orange 8, Acid Orange 10, Acid Red 4, and Acid Red 88) have in their structure either 1-amino-2-naphthol or 2-amino-1-naphthol. In addition, an analysis of the structures of the dyes degraded suggests that there are certain positions and types of substituents on the azo dye which determine if degradation will occur. Growth and dye decolorization occurs only aerobically and does not occur under fermentative or denitrification conditions. The mechanism by which 1CX decolorizes azo dyes appears to be through reductive cleavage of the azo bond. In the case of Orange II, the initial degradation products were sulfanilic acid and 1-amino-2-naphthol. Sulfanilic acid, however, was not used by 1CX as a growth substrate. The addition of glucose or inorganic nitrogen inhibited growth and decoloration of azo dyes by 1CX. Attempts to grow the organism on chemically defined media containing several different amino acids and sugars as sources of nitrogen and carbon were not successful. Phylogenetic analysis of Sphingomonas sp strain 1CX shows it to be related to, but distinct from, other azo dye-decolorizing Sphingomonas spp strains isolated previously from the same wastewater treatment facility.

Journal ArticleDOI
Y Wang1, Z S Zhang1, J S Ruan1, Y M Wang1, S M Ali1 
TL;DR: It is concluded that actinomycete diversity in the tropical rainforest is very great and should represent an excellent source for discovery of novel bioactive compounds.
Abstract: Five thousand actinomycetes were isolated from soil samples collected from rainforests in Singapore and the generic identities of these isolates were determined by using a procedure that combined morphological, chemotaxonomic and 16S rDNA sequence-based phylogenetic analyses. Actinomycetes belonging to a total of 36 genera were identified. The most abundant isolates are members of Streptomyces, Micromonospora, Actinoplanes, Actinomadura, Nonomuria, Nocardia and Streptosporangium. By phylogenetic analysis of 16S rDNA sequences of our isolates together with those of known actinomycete species, we also evaluated the species diversity of several genera including Streptomyces, Micromonospora, Nonomuria, and Actinomadura. We found that: first, the tropical isolates are present in most clades represented by known species; and second, many tropical isolates form new clades distant from the known species, indicating the presence of unidentified taxa at both species and genus levels. Based on these results, we conclude that actinomycete diversity in the tropical rainforest is very great and should represent an excellent source for discovery of novel bioactive compounds.

Journal ArticleDOI
TL;DR: F fluorescently labeled oligonucleotide probes targeted against 16S rRNA were used to typify strains previously assigned to the genus Sphingomonas and suggest that these organisms could be involved in the formation process of sludge flocs.
Abstract: The increasing significance of members of the genus Sphingomonas in biotechnological applications has led to an increased interest in the diversity, abundance and ecophysiological potential of this group of Gram-negative bacteria. This general focus provides a challenge to improve means for identification of sphingomonads; eg molecular genetic methods for rapid and specific detection could facilitate screening of new isolates. Here, fluorescently labeled oligonucleotide probes targeted against 16S rRNA were used to typify strains previously assigned to the genus. All 46 sphingomonads tested including type strains of 21 Sphingomonasspecies could be detected with a probe originally designed for the genus and all but one with a probe designed for the alpha-4 subgroup of the Proteobacteria. The two probes are suitable for direct detection of sphingomonads in pure and mixed cultures as well as in environmental samples of unknown composition. The probes were used to identify sphingomonads in situ in activated sludge samples. Sphingomonads were rather abundant accounting for about 5–10% of the total cells in municipal sludges. Distinct patterns in aggregation of the cells suggest that these organisms could be involved in the formation process of sludge flocs.

Journal ArticleDOI
TL;DR: In both crops LB resulted in aerobically stable silages when applied alone or with LP and yeasts, whereas LP resulted in unstable silages upon aerobic exposure; the stability of the LB-treated silages is attributed to the higher acetic acid concentrations.
Abstract: The effect of applying Lactobacillus buchneri (LB), alone or in combinations with L. plantarum (LP) and yeasts at ensiling, on the ensiling fermentation and aerobic stability of wheat and sorghum silages was studied under laboratory conditions. Treatments comprised LB, LP, yeasts, LB + yeasts, LP + yeasts, LB + LP and B-589 (a lactic acid bacterial strain isolated from wheat silage in Israel) alone. The treatments were also applied to sterilized aqueous extracts of wheat which were incubated at 30°C for 10 days. The pH of all treatments was below 4.0 already on day 4 of the experiment. Silages treated with LB had higher acetic acid concentrations than those treated with LP: 32–34 vs 16–18, and 28–34 vs 4–7 g kg−1 in the experiments with wheat and sorghum, respectively. Similar results were obtained in wheat extracts. In the aqueous phase, marked differences in pH decrease were noticed among the treatments: 4.4 in LB, 6.0 in the yeast, and 3.7 in LP and B-589 (from day 3 and onwards). In both crops LB resulted in aerobically stable silages when applied alone or with LP and yeasts, whereas LP resulted in unstable silages upon aerobic exposure; the stability of the LB-treated silages is attributed to the higher acetic acid concentrations. The isolated strain (B-589) did not exhibit any advantage with regard to aerobic stability.

Journal ArticleDOI
TL;DR: The highest cell recovery was obtained by rehydrating the cells in cheese whey permeate between 20–30°C done at pH 6.0–7.0, satisfying the demands for cell survival, repair and slow swelling (adaptions).
Abstract: CNRZ 303 entrapped in Ca-alginate gel beads was investigated for improved survival and stability during fluidized-bed drying, storage and rehydration. Addition of protective solutes was very important. Studies of the conditions showed that inactivation of entrapped L. helveticus started when the water content exceeded 0.3–0.4 g H2O (g dry wt)−1 for adonitol, glycerol and reconstituted non fat milk solids (NFSM). With Ringer’s solution (control) and betaine, the fall in viability was evident above 1 g H2O (g dry wt)−1. Drying down to 0.2 g H2O (g dry wt)−1 required the removal of 98.5–98.9% of the water. The best survival rate with the least injured cells among survivors was experienced with adonitol and NFMS, respectively, 71% and 57% (compared to the initial) immediately after dehydration. Adonitol and NFMS were also best for survival during storage. The highest cell recovery was obtained by rehydrating the cells in cheese whey permeate between 20–30°C done at pH 6.0–7.0, satisfying the demands for cell survival, repair and slow swelling (adaptions).

Journal ArticleDOI
TL;DR: To optimize the process, strain CBS 6556 was grown in concentrated cheese whey, resulting in a higher β-galactosidase production, and had low stability at room temperature (30°C) as well as at a storage temperature of 4°C.
Abstract: We studied the utilization of protein-hydrolyzed sweet cheese whey as a medium for the production of beta-galactosidase by the yeasts Kluyveromyces marxianus CBS 712 and CBS 6556. The conditions for growth were determined in shake cultures. The best growth occurred at pH 5.5 and 37 degrees C. Strain CBS 6556 grew in cheese whey in natura, while strain CBS 712 needed cheese whey supplemented with yeast extract. Each yeast was grown in a bioreactor under these conditions. The strains produced equivalent amounts of beta-galactosidase. To optimize the process, strain CBS 6556 was grown in concentrated cheese whey, resulting in a higher beta-galactosidase production. The beta-galactosidase produced by strain CBS 6556 produced maximum activity at 37 degrees C, and had low stability at room temperature (30 degrees C) as well as at a storage temperature of 4 degrees C. At -4 degrees C and -18 degrees C, the enzyme maintained its activity for over 9 weeks.

Journal ArticleDOI
TL;DR: Results showed that by integrating the use of the S. hygroscopicus YCED9/WYE53 bio-dethatch formulation into routine turf management practices, it should be possible to both minimize thatch build-up while also controlling fungal turfgrass diseases by way of the antifungal biocontrol activity of these strains.
Abstract: Disease prevention is a current practice used to minimize fungal diseases of turfgrasses in lawns and golf greens. Prevention is accomplished through fungicide applications, and by periodic thatch removal. During the development of a microbial biodethatch product utilizing the lignocellulose-degrading Streptomyces hygroscopicus strains YCED9 and WYE53, we demonstrated using in vitro plate antagonism bioassays that both strains are antagonists of various turfgrass fungal pathogens. These activities were present when the cultures were growing on thatch, as demonstrated by antifungal antagonism bioassays with culture filtrates. Experiments conducted using a growth chamber demonstrated that a bio-dethatch formulation containing spores of strains YCED9 and WYE53 in a zeolite carrier, provided protection for Kentucky bluegrass seedlings against turfgrass pathogens, including Pythium ultimum, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia homeocarpa, Gaeumannomyces graminis and Microdochium nivale. Results showed that by integrating the use of the S. hygroscopicus YCED9/WYE53 bio-dethatch formulation into routine turf management practices, it should be possible to both minimize thatch build-up while also controlling fungal turfgrass diseases by way of the antifungal biocontrol activity of these strains. This in turn would help control fungal pathogens in turfgrass while minimizing the need for routine chemical fungicide applications.

Journal ArticleDOI
TL;DR: Protease inhibition studies indicated that serine proteases are the predominant proteolytic enzymes produced by these feather-degrading isolates.
Abstract: Canola meal that contains a high level of protein (40% crude protein) was used as compost material for the isolation of feather-degrading bacteria. After 7 and 14 days, bacteria were isolated from compost amended and unamended with soil. Eighty bacterial isolates from canola meal compost were then grown on milk-agar and isolates that produced proteolytic enzymes were identified by the formation of clear haloes around the colonies. A feather medium was chosen for a secondary selection of feather-degrading isolates. Of the eight isolates that hydrolyzed milk protein, five isolates hydrolyzed feathers. Their keratinolytic activities were subsequently confirmed by an assay using azo-keratin as substrate. Seven of the eight bacteria that hydrolyzed milk protein were Bacillus spp, and all five isolates that hydrolyzed feathers were strains of Bacillus licheniformis. Protease inhibition studies indicated that serine proteases are the predominant proteolytic enzymes produced by these feather-degrading isolates.

Journal ArticleDOI
TL;DR: The models demonstrated that the optimal light intensity for mixotrophic growth of H. pluvialis in batch or fed-batch cultures in a 3.7-L bioreactor was 90–360 μmol m−2 s−1, and that the stepwise increased lightintensity mode could be replaced by a constant light intensity mode.
Abstract: High cell density cultivation of Haematococcus pluvialis for astaxanthin production was carried out in batch and fed-batch modes in 3.7-L bioreactors with stepwise increased light intensity control mode. A high cell density of 2.65 g L−1 (batch culture) or 2.74 g L−1 (fed-batch culture) was obtained, and total astaxanthin production in the fed-batch culture (64.36 mg L−1) was about 20.5% higher than in the batch culture (53.43 mg L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, astaxanthin formation, as well as sodium acetate consumption was proposed. Good agreement was found between the model predictions and experimental data. The models demonstrated that the optimal light intensity for mixotrophic growth of H. pluvialis in batch or fed-batch cultures in a 3.7-L bioreactor was 90–360 μmol m−2 s−1, and that the stepwise increased light intensity mode could be replaced by a constant light intensity mode.

Journal ArticleDOI
TL;DR: Structural variations of fatty acids and dihydrosphingosines in the GSL-1 are presented and it is shown that Sphingomonas spp closely related to the type species contain both GSL-2 and the oligosaccharide-type GSL such as GSL-4A, but other genera in the α-4 subclass of Proteobacteria contain only GSL- 1.
Abstract: spp are phylogenetically placed in the α-4 subclass of Proteobacteria. They have glycosphingolipids (GSL) in their membranes instead of lipopolysaccharide (LPS) as in other Gram-negative bacteria. S. paucimobilis, the type species of the genus, has GSL-1, which contains only glucuronic acid (GlcA) as a sugar moiety, and GSL-4A, which contains a tetrasaccharide including GlcA. GSL-1 and GSL-4A form the outer membrane of S. paucimobilis with outer membrane proteins and phospholipids. In the outer membrane, GSLs are assumed to locate and function as does the LPS of other Gram-negative bacteria. Sphingomonas spp closely related to the type species contain both GSL-1 and the oligosaccharide-type GSL such as GSL-4A, but other Sphingomonas spp and other genera in the α-4 subclass of Proteobacteria contain only GSL-1. Structural variations of fatty acids and dihydrosphingosines in the GSL-1 are presented.

Journal ArticleDOI
TL;DR: The genetics and biochemistry of daunorubsicin and doxorubicin production by Streptomyces peucetius is reviewed, with a focus on how such information can be used for the genetic engineering of strains having improved titers of these two antitumor antibiotics.
Abstract: The genetics and biochemistry of daunorubicin and doxorubicin production by Streptomyces peucetius is reviewed, with a focus on how such information can be used for the genetic engineering of strains having improved titers of these two antitumor antibiotics.

Journal ArticleDOI
TL;DR: Three halobacteria strains (T5, T6, T7), growing optimally at a sodium chloride concentration of 3.5 M, were isolated from samples collected in the Tunisian marine saltern and DNA–DNA hybridization indicated that the T5 isolate is a new strain of H. japonica.
Abstract: Three halobacteria strains (T5, T6, T7), growing optimally at a sodium chloride concentration of 3.5 M, were isolated from samples collected in the Tunisian marine saltern located close to Monastir. Although they were different in colony and cell morphology, the isolates were similar in most respects and all produced a homopolyester identified spectroscopically as polyhydroxybutyrate when grown on carbohydrates. Under the same conditions, the isolates formed acidic exopolysaccharides. Acid methanolysis of their complex lipids released archaeol (2,3-di-O-phytanyl-sn-glycerol). All the isolates had polar lipid patterns characteristic of representatives of the genus Haloarcula. Partial sequence analysis of 16S rRNA genes from strain T5 confirmed its assignment to the genus Haloarcula. Although strain T5 differed phenotypically from the species Haloarcula japonica in several respects, DNA–DNA hybridization indicated that the T5 isolate is a new strain of H. japonica.

Journal ArticleDOI
TL;DR: The results suggest that in order to select yeasts with a broad spectrum of action, more suitable for commercial development, it would be advantageous to perform preliminary assays against several pathogens and in particular on different fruit species.
Abstract: The yeasts Rhodotorula glutinis (LS-11), Cryptococcus laurentii (LS-28), Candida famata (21-D) and Pichla guilliermondii (29-A) and the yeast-like fungus Aureobasidium pullulans (LS-30), previously selected and characterized for mechanisms of action and antagonistic activity against postharvest pathogens In small and large-scale experiments, were used In this study In order to assess interrelationships among the main factors (antagonist, host fruit and fungal pathogen) involved in biological control of postharvest diseases. The antagonists were evaluated for their Inhibitory activity (IA) against six common postharvest fungal pathogens on six different host fruits. Artificially wounded fruits were first inoculated with the antagonist and 2 h later with the pathogen; subsequently they were kept at 20°C for 4-6 days. The IA of each antagonist was evaluated and data were submitted to factorial analysis of variance. The populations of antagonists were also monitored on wounded and unwounded fruits kept at 20°C for 7 days. Each factor examined (antagonist, host fruit and fungal pathogen) as well as their interactions significantly affected the IA. However, among the antagonists, isolates LS-28 and LS-30 were only slightly affected by both host and pathogen, showing a wide range of activity, whereas isolate LS-1 1 had a variable IA. All the antagonists rapidly colonized the wounds, while their population remained substantially unchanged on unwounded fruits. These results suggest that in order to select yeasts with a broad spectrum of action, more suitable for commercial development, it would be advantageous to perform preliminary assays against several pathogens and in particular on different fruit species.


Journal ArticleDOI
TL;DR: Hairy root cultures of Salvia miltiorrhiza were established by infecting sterile plantlets with Agrobacterium rhizogenes ATCC 15834, and the transformation was proved by direct detection of the inserted T-DNA by the polymerase chain reaction.
Abstract: Hairy root cultures of Salvia miltiorrhiza were established by infecting sterile plantlets with Agrobacterium rhizogenes ATCC 15834, and the transformation was proved by direct detection of the inserted T-DNA by the polymerase chain reaction. As determined by HPLC, these hairy root cultures had the ability to produce lithospermic acid B (LAB), rosmarinic acid (RA) and other related phenolic compounds, the water-soluble active components of the plant. The effect of five different basal media, MS, MS-NH 4 (MS without ammonium nitrate), B5, WPM and 6,7-V on the root growth and phenolic compound production was studied. It was found that MS-NH 4 and 6,7-V media were superior to MS, B5 and WPM media in terms of both root growth and phenolic compound production. The time course of biomass accumulation and phenolic compound formation was also examined in the culture using MS-NH 4 medium. During cultivation, the content of RA in the roots was stable being approximately 0.48% of dry weight while the content of LAB fluctuated between 0.73% and 1.61% of dry weight, and decreased gradually at the stationary phase of growth. The highest production of LAB and RA was about 64 mg L−1 and 23 mg L−1, respectively.

Journal ArticleDOI
TL;DR: These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.
Abstract: Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.