scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Micromechanics and Microengineering in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors report an investigation of the variation in the mechanical properties of bulk polydimethylsiloxane (PDMS) elastomers with curing temperature, over the range 25 ◦ C to 200 ¼ C, over a range up to 40% strain and hardness of 44−54 ShA.
Abstract: Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 ◦ C to 200 ◦ C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young’s modulus of 1.32‐2.97 MPa, ultimate tensile strength of 3.51‐7.65 MPa, compressive modulus of 117.8‐186.9 MPa and ultimate compressive strength of 28.4‐51.7 GPa in a range up to 40% strain and hardness of 44‐54 ShA.

1,218 citations


Journal ArticleDOI
TL;DR: A review of the important printing methods, including high precision traditional printing methods as well as recently emerging techniques, can be found in this article, where the authors also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.
Abstract: Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

222 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a review of the progress of micro hot embossing in terms of polymeric material behavior and corresponding apparatus, challenges and innovations in mold fabrication techniques, and industrial applications.
Abstract: Micro hot embossing of thermoplastic polymers is a promising process to fabricate high precision and high quality features in micro/nano scale. This technology has experienced more than 40 years development and has been partially applied in industrial production. Three modes of micro hot embossing including plate-to-plate, roll-to-plate and roll-to-roll have been successively developed to meet the increasing demand for large-area patterned polymeric films. This review surveys recent progress of micro hot embossing in terms of polymeric material behavior, embossing process and corresponding apparatus. Besides, challenges and innovations in mold fabrication techniques are comprehensively summarized and industrial applications are systematically cataloged as well. Finally, technical challenges and future trends are presented for micro hot embossing of thermoplastic polymers.

199 citations


Journal ArticleDOI
TL;DR: To provide sufficient stiffness for penetration purposes, a drawing lithography technology for uniform maltose coating is developed to make the maltose-coated polyimide neural probe become a stiff microneedle.
Abstract: The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe body while its flexibility can minimize the micromotion between the probe and brain tissue. To provide sufficient stiffness for penetration purposes, we developed a drawing lithography technology for uniform maltose coating to make the maltose-coated polyimide neural probe become a stiff microneedle. The coating thicknesses under different temperature and the corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on the neural probe recording electrodes to improve the charge delivery ability and reduce the impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated by in vivo tests.

135 citations


Journal ArticleDOI
TL;DR: In this article, the design, characterization and theoretical analysis of a capacitive vibration energy harvester is presented, which is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field.
Abstract: This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 μ Wo f the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

128 citations


Journal ArticleDOI
TL;DR: In this article, the effects of oxygen plasma and humidity on some key surface properties such as the water contact angle, roughness and hardness of three materials: silicon (Si), silicon dioxide (SiO2) and glass, and their impact on bondability were investigated.
Abstract: For heterogeneous integration in many More-than-Moore applications, surface preparation is the key step to realizing well-bonded multiple substrates for electronics, photonics, fluidics and/or mechanical components without a degradation in performance. Therefore, it is critical to understand how various processing and environmental conditions affect their surface properties. In this paper, we investigate the effects of oxygen plasma and humidity on some key surface properties such as the water contact angle, roughness and hardness of three materials: silicon (Si), silicon dioxide (SiO2) and glass, and their impact on bondability. The low surface roughness, high surface reactivity and high hydrophilicity of Si, SiO2 and glass at lower activation times can result in better bondability. Although, the surface reactivity of plasma-ambient-humidity-treated Si and SiO2 is considerably reduced, their reduction of roughness and increase of hydrophilicity may enable good bonding at low temperature heating due to augmented hydroxyl groups. The decrease of hardness of Si and SiO2 with increased activation time is attributed to higher surface roughness and the formation of amorphous layers of Si. While contact angle and surface roughness results show a correlation with bondability, the role of hardness on bondability requires further investigation.

93 citations


Journal ArticleDOI
TL;DR: In this paper, a new high-resolution ac-pulse modulated electrohydrodynamic (EHD)-jet printing technology on highly insulating substrates for drop-on-demand fabrication of electrical features and interconnects using silver nanoink.
Abstract: This paper presents a new high-resolution ac-pulse modulated electrohydrodynamic (EHD)-jet printing technology on highly insulating substrates for drop-on-demand fabrication of electrical features and interconnects using silver nanoink. In traditional EHD-jet printing, the remained charge of the printed droplets changes the electrostatic field distribution and interrupts the follow-on printing behavior, especially for highly insulating substrates which have slow charge decay rates. The residue charge makes the control of EHD-jet printing very challenging for high-resolution continuous features. In this paper, by using modulated ac-pulsed voltage, the EHD-jet printing process switches the charge polarity of the consequent droplets to neutralize the charge on the substrate. The effect of the residue charge is minimized, which enables high-resolution printing of continuous patterns. Moreover, by modulating the pulse frequency, voltage, and duration, the EHD-jet printing behavior can be controlled with respect to printing speed/frequency and droplet size. Printing frequency is directly controlled by the pulse frequency, and the droplet dimension is controlled by the voltage and the duration of the pulse. We demonstrated that ac-pulse modulated EHD-jet printing can overcome the long-predicated charge accumulation problem on highly insulating substrates, and potentially be applied to many flexible electronics applications.

88 citations


Journal ArticleDOI
TL;DR: In this article, a flexible, three-axis carbon nanotube (CNT) polymer composite-based tactile sensor is presented, which consists of a flexible substrate, four sensing cells, and a bump structure.
Abstract: A flexible, three-axis carbon nanotube (CNT)–polymer composite-based tactile sensor is presented. The proposed sensor consists of a flexible substrate, four sensing cells, and a bump structure. A CNT–polydimethylsiloxane (PDMS) composite is produced by a solvent evaporation method, and thus, the CNTs are well-dispersed within the PDMS matrix. The composite is directly patterned onto a flexible substrate using a screen printing technique to fabricate a sensor with four sensing cells. When a force is applied on the bump, the magnitude and direction of force could be detected by comparing the changes in electrical resistance of each sensing cell caused by the piezoresistive effect of the composite. The experimentally verified sensing characteristics of the fabricated sensor exhibit a linear relationship between the resistance change and the applied force, and the measured sensitivities of the sensor for the normal and shear forces are 6.67 and 86.7%/N for forces up to 2.0 and 0.5 N, respectively. Experiments to verify the load-sensing repeatability show a maximum 2.00% deviation of the resistance change within the tested force range.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the design, fabrication, and characterization of a tactile display for people with blindness or low vision is reported, where each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads.
Abstract: The design, fabrication, and characterization of a new type of tactile display for people with blindness or low vision is reported Each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads When the tactile elements are formed into a 2D array, information can be conveyed to the user by varying the pattern of vibrations in space and time Analytical models and finite element analysis were used to design individual tactile elements, which were implemented with PZT actuators and both SU-8 and 3D-printed scissor amplifiers The measured displacements of these 3 mm × 10 mm, MEMS-enabled tactile elements exceed 10 µm, in agreement with models, with measured forces exceeding 45 mN The performance of the MEMS-enabled tactile elements is compared with the performance of larger, fully-macroscale tactile elements to demonstrate the scale dependence of the devices The creation of a 28-element prototype is also reported, and the qualitative user experience with the individual tactile elements and displays is described

70 citations


Journal ArticleDOI
TL;DR: In this article, a new generation of micro-fabricated electrospray thrusters is presented for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays.
Abstract: Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1–100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm−2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10–30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.

69 citations


Journal ArticleDOI
TL;DR: In this article, the shrinkage of polydimethylsiloxane (PDMS) with different mixing ratios and curing temperatures is investigated. But corrections to the mold master are seldom applied to counteract the shrinkages of PDMS, which can lead to leaking devices and poor alignment of layers.
Abstract: Polydimethylsiloxane (PDMS) is a widely used material for fabrication of microfluidic devices and for replication of micro- and nanotextured surfaces. Shrinkage of PDMS in the fabrication process can lead to leaking devices and poor alignment of layers. However, corrections to the mold master are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base).

Journal ArticleDOI
TL;DR: In this article, a method was developed to replicate ultra high aspect ratio (UHAR) nanopillars by injection molding with failure rates lower than one pillar in a thousand.
Abstract: Replication-based nanofabrication techniques offer rapid, cost effective ways to produce nanostructured devices for a host of applications in engineering, biological research and beyond. In this work we developed a method to replicate ultra high aspect ratio (UHAR) nanopillars by injection molding with failure rates lower than one pillar in a thousand. We provide a review of the literature in which replication of difficult micro- and nanostructures is facilitated through the use of different tooling materials and surface coatings, before describing the non-adhesive surface coatings which we used to translate a previously developed technique from low to high aspect ratios. This development involved a systematic study of nine different surface coatings on polymer tooling initially patterned by nanoimprint lithography. Using this method we were able to produce injection moulded pillar-like nanostructures with aspect ratios of up to 20:1, more than 6 times that reported elsewhere in the literature for this type of feature.

Journal ArticleDOI
Kai Tao1, Shuwei Liu1, Sun Woh Lye1, Jianmin Miao1, Xiao Hu1 
TL;DR: In this paper, a rotational symmetrical resonator with three sets of spiral springs is used to convert low-level ambient kinetic energy to electrical energy for 3D electret-based micro power generator.
Abstract: A novel three-dimensional (3D) electret-based micro power generator with multiple vibration modes has been developed, which is capable of converting low-level ambient kinetic energy to electrical energy. The device is based on a rotational symmetrical resonator which consists of a movable disc-shaped seismic mass suspended by three sets of spiral springs. Experimental analysis shows that the proposed generator operates at an out-of-plane direction at mode I of 66 Hz and two in-plane directions at mode II of 75 Hz and mode III of 78.5 Hz with a phase difference of about 90°. A corona localized charging method is also proposed that employs a shadow mask and multiple discharge needles for the production of micro-sized electret array. From tests conducted at an acceleration of 0.05 g, the prototype can generate a maximum power of 4.8 nW, 0.67 nW and 1.2 nW at vibration modes of I, II and III, respectively. These values correspond to the normalized power densities of 16 µW cm−3 g−2, 2.2 µW cm−3 g−2 and 4 µW cm−3 g−2, respectively. The results show that the generator can potentially offer an intriguing alternative for scavenging low-level ambient energy from 3D vibration sources.

Journal ArticleDOI
TL;DR: In this article, a 1D microelectromechanical system (MEMS) optical scanner actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film was developed for OCT applications.
Abstract: Resonant 1D microelectromechanical systems (MEMS) optical scanners actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film were developed for endoscopic optical coherence tomography (OCT) application. The MEMS scanners were designed as the resonance frequency was less than 125 Hz to obtain enough pixels per frame in OCT images. The device size was within 3.4 mm × 2.5 mm, which is compact enough to be installed in a side-imaging probe with 4 mm inner diameter. The fabrication process started with a silicon-on-insulator wafer, followed by PNZT deposition by the Rf sputtering and Si bulk micromachining process. The fabricated MEMS scanners showed maximum optical scan angles of 146° at 90 Hz, 148° at 124 Hz, 162° at 180 Hz, and 152° at 394 Hz at resonance in atmospheric pressure. Such wide scan angles were obtained by a drive voltage below 1.3 Vpp, ensuring intrinsic safety in in vivo uses. The scanner with the unpoled PNZT film showed three times as large a scan angle as that with a poled PZT films. A swept-source OCT system was constructed using the fabricated MEMS scanner, and cross-sectional images of a fingertip with image widths of 4.6 and 2.3 mm were acquired. In addition, a PNZT-based angle sensor was studied for feedback operation.

Journal ArticleDOI
TL;DR: A flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications and incurs fivefold less neural damage than that incurred by a conventional silicon neural probe is presented.
Abstract: This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive experimental study and characterization of material and bonding of PDMS-based structures to various substrates, including semiconductor substrates (silicon, zinc oxide, and silicon dioxide), metals (gold, aluminum), photoresists (SU-8, AZxx) and glass.
Abstract: This paper presents a comprehensive experimental study and characterization of material and bonding of PDMS based structures to various substrates. A previously published method [1] of bonding is further improved with the inclusion of more substrate material and additional characteristics. Uncured PDMS is used as an adhesive to bond PDMS devices reversibly to various substrates including a number of commonly used substrate materials that are not supported by the widely used plasma treatment method. We have optimized parameters such as PDMS base to curing agent ratio, curing temperature, and PDMS device age to obtain better bond strengths and quality. Bond strengths are presented for semiconductor substrates (silicon, zinc oxide, and silicon dioxide), metals (gold, aluminum), photoresists (SU-8, AZxx) and glass. Silicon based substrates experienced minor amounts of surface residue, but the method is fully reversible for other tested substrates. Bond strengths were measured as maximum endurable pressure between PDMS and substrates. Maximum average bond strengths of more than 0.4 MPa were achieved for substrates with Si-O groups. Other substrates exhibited maximum average bond strengths in the range 0.2–0.3 MPa. Also presented is a method that avoids alignment step for PDMS microfluidic device bonding, named the non-aligned method. This method provides bond strengths of more than 0.1 MPa. Presented methods do not need special equipment or processes such as plasma generators or temperature increases. Biocompatibility tests are performed for materials used in fabrications to ensure applicability in bio-sensing related devices.

Journal ArticleDOI
TL;DR: In this article, an energy-based framework is developed to analytically study energy localization in the MEMS device by using a novel, electrostatically-induced stiffness perturbation.
Abstract: This paper investigates the enhanced sensitivity to external perturbations through mode localization in a coupled resonant MEMS transducer device. An energy-based framework is developed to analytically study energy localization in the MEMS device by using a novel, electrostatically-induced stiffness perturbation. Specifically, we analyze the mode localization associated with eigenvalue veering phenomenon, resulting from a symmetry-breaking perturbation in a coupled two-resonators MEMS device. The measured mode shape sensitivities are compared with predictions made by both a simplified analytical model and a more detailed Simulink model. The mode shape sensitivity to perturbations is shown to be an order of magnitude higher than that of resonant frequency shifting. The sensitivity can be further increased by decreasing the coupling strength between the two resonators, but with a reduced dynamic range of the external perturbations.

Journal ArticleDOI
TL;DR: In this article, a triboelectric energy harvesting mechanism was proposed, which utilizes stiffness induced in the cantilever motion due to contact between two triangular surfaces, and the maximum power output measured from the device was observed to be 0.69 μW at an acceleration of 1 g.
Abstract: Triboelectric energy harvesting has recently garnered a lot of interest because of its easy fabrication and high power output. Contact electrification depends on the chemical properties of contacting materials. Another important factor in contact electrification mechanism is surfaces' elastic and topographical characteristics. One of the biggest limitations of resonant mechanism based devices is their narrow operating bandwidth. This paper presents a broadband mechanism which utilizes stiffness induced in the cantilever motion due to contact between two triboelectric surfaces. We have conducted experiments using polydimethylsiloxane (PDMS) micropad patterns to study the effect of micropad array configuration on the performance of triboelectric energy harvesting devices. The maximum power output measured from the device was observed to be 0.69 μW at an acceleration of 1 g. Due to the non-linearity introduced by contact separation mechanism, the bandwidth of the triboelectric energy harvester was observed to be increased by 63% at an acceleration level of 1 g. A hybrid energy harvesting mechanism has also been demonstrated by compounding the triboelectric energy harvester with a piezoelectric bimorph.


Journal ArticleDOI
TL;DR: In this paper, the processing parameters of the UV-3DP technique using two photo-curable polymers and their associated nanocomposite materials were thoroughly investigated, including materials' rheological behavior, deposition speed and extrusion pressure, and UV illumination conditions.
Abstract: Ultraviolet-assisted three-dimensional (3D) printing (UV-3DP) was used to manufacture photopolymer-based microdevices with 3D self-supported and freeform features. The UV-3DP technique consists of the robotized deposition of extruded filaments, which are rapidly photopolymerized under UV illumination during the deposition process. This paper systematically studies the processing parameters of the UV-3DP technique using two photo-curable polymers and their associated nanocomposite materials. The main processing parameters including materials' rheological behavior, deposition speed and extrusion pressure, and UV illumination conditions were thoroughly investigated. A processing map was then defined in order to help choosing the proper parameters for the UV-3DP of microstructures with various geometries. Compared to self-supported features, the accurate fabrication of 3D freeform structures was found to take place in a narrower processing region since a higher rigidity of the extruded filament was required for structural stability. Finally, various 3D self-supported and freeform microstructures with high potential in micro electromechanical systems, micro-systems and organic electronics were fabricated to show the capability of the technique.

Journal ArticleDOI
TL;DR: In this article, an invisible Ag mesh transparent electrodes (TEs) were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing, which had a sheet resistance of 1.49 Ω.
Abstract: Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/. The printing speed was 30 cm s−1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices.

Journal ArticleDOI
TL;DR: In this article, micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one, and the objective is to investigate how these accurate micro characterizations systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification.
Abstract: Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25?80??m were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

Journal ArticleDOI
TL;DR: A simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncturemicroneedles is presented.
Abstract: Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

Journal ArticleDOI
TL;DR: In this article, the fabrication of metallic micro-mushroom re-entrant structures and characterization of their hydrophobicity and oleophobicity were presented, with typical feature sizes in the range of 10-100 μm.
Abstract: This paper presents the fabrication of metallic micro-mushroom re-entrant structures and the characterization of their hydrophobicity and oleophobicity. Five different microstructure geometries are introduced, with typical feature sizes in the range of 10–100 μm. These microstructures are realized in steel, and are fabricated over the cm-scale using micro electrical discharge machining (mEDM). The liquid repellency of these surfaces is characterized using droplets of either water (surface energy γlg = 72.4 mN m−1), RL-68H oil (γlg = 28.6 mN m−1), or Isopropanol (IPA) (γlg = 21.7 mN m−1). The water droplets form nearly perfect spheres, with contact angles in the range 146–162°, and contact angle hysteresis of 19–35°. The oil droplet contact angles are in the range 106–152° and the IPA contact angles are in the range 75–123°. Strong re-entrant features and close spacing are necessary to support a fully non-wetting state for use with oil and IPA. Water forms the highest contact angles with narrow, post-like, and widely spaced micro-mushroom geometries.

Journal ArticleDOI
TL;DR: In this paper, a direct inkjet printing technique was used to produce narrow (40-90 µm) microelectrodes on polydimethylsiloxane (PDMS) substrate.
Abstract: Recently, direct inkjet printing of conductive solutions has received much attention in the microfluidics and lab-on-a-chip community because of its low-cost and mask-free deposition of electrodes on various substrates. However, the investigation of micro-scale direct inkjet printing on the polydimethylsiloxane (PDMS) substrate has not been completed. Here we present a direct inkjet printing technique to produce narrow (40–90 µm) silver microelectrodes on PDMS. Extensive experimental characterization studies on the pattern uniformity and electrical properties of the printed silver lines are presented. The effect of major printing parameters such as drop spacing, sintering temperature and duration, platen temperature, and nozzle temperature have been thoroughly investigated. We also investigated multiple layer printing as well as the effects of thermal expansion and mechanical bending. In order to demonstrate the utility of the inkjet-printed silver microelectrode, we fabricated both quadruple and castellated electrodes, and conducted dielectrophoretic manipulation of microbeads. The results clearly show that the printed silver electrodes can be used for electrokinetic applications in PDMS microchip devices. We believe that the direct inkjet printing of silver ink on PDMS presented here can provide a very convenient way of creating microelectrodes on PDMS devices for a variety of applications in the MEMS, microfluidics, and lab-on-a-chip communities.

Journal ArticleDOI
TL;DR: In this article, a multi-use, high-resolution NMR/MRI micro-detection probe based on a Helmholtz coil pair in the center of the probe, built out of two 1.5mm diameter wirebonded copper coils, is presented.
Abstract: In this study, we report on a novel, multi-use, high-resolution NMR/MRI micro-detection probe for the screening of flat samples. It is based on a Helmholtz coil pair in the centre of the probe, built out of two 1.5?mm diameter wirebonded copper coils, resulting in a homogeneous distribution of the magnetic field. For liquids and suspensions, custom fabricated, disposable sample inserts are placed inside the pair and aligned automatically, preventing the sensor and the samples from contamination. The sensor was successfully tested in a 500?MHz (11.7 T) spectrometer where we achieved a linewidth of 1.79?Hz (3.58?ppb) of a water phantom. Nutation experiments revealed an overall B1-field uniformity of 92% (ratio in signal intensity at flip angles of 810?/90?), leading to a homogeneous excitation of concentration limited samples. To demonstrate the imaging capabilities of the detector, we acquired images of a solid and a liquid sample?of a piece of leaf, directly inserted into the probe and of a sample insert, filled with a suspension of 50 ?m diameter polymer beads and deionized water, with in-plane resolutions of 20 ? 20 ??m2 and 10 ? 10 ??m2, respectively.

Journal ArticleDOI
TL;DR: In this paper, a cost-effective method to fabricate microlenses on a spherical surface was presented, where the fill factor was about 78% and multiple replication processes were used to transfer the microlense arrays from the planar substrate onto a curved surface.
Abstract: In comparison to traditional planar optical devices, compound-eye structured optical elements can reduce the number of components and their volume when being applied to wide-field imaging and sensing systems. However, the fabrication process for microstructures on a curvilinear surface has many difficulties since traditional fabrication techniques are planar. In this paper, we present a cost-effective method to fabricate microlenses on a spherical surface. Microlenses, of which the fill factor was about 78%, were formed using the thermal reflow technique, followed by multiple replication processes to transfer the microlenses from the planar substrate onto a spherical surface. We produced a curved mold with concave microlenses, and it allowed this method to be replicable. A polydimethylsiloxane elastomer was employed as the material for both the microlenses and the mold. The radius of curvature of the spherical surface was approximately 6.1 mm. The variation of the microlenses was analyzed, demonstrating high uniformity. The imaging performance of the microlenses is also presented. The curved microlens arrays were combined with image sensors, and sub-images of objects at various distances are shown. The experimental results demonstrate a high potential for curved microlens arrays being applied to compact mobile camera lenses.

Journal ArticleDOI
TL;DR: In this paper, a thin-film Pb(Zr0.52Ti0.48) micro diaphragm pressure sensor for high temperature and high pressure conditions is presented.
Abstract: This paper reports the characterization and real-time testing of thin-film Pb(Zr0.52Ti0.48) (PZT) micro diaphragm pressure sensor at high temperature (up to 390 °C) and high pressure (up to 105 kPa) conditions. Firstly, the influence of thermal stress on micro diaphragm deformation is investigated theoretically and experimentally. Secondly, the effect of rhombohedral–tetragonal, tetragonal–cubic phase transitions and lattice parameter changes of the PZT composite on the resonance frequency are studied. Thirdly, a good performance of the proposed sensor at low-frequency oscillatory flow generated by a vibrating sphere source (frequency of 35 Hz) in silicone oil bath at different temperatures is reported. The observations lead to the conclusion that despite the fluctuations on resonant frequency with increasing temperature, the proposed PZT sensor can be effectively used in high temperature/pressure applications.

Journal ArticleDOI
TL;DR: In this article, a silicon six-axis force-torque sensor is designed and realized to be used for measurement of the power transfer between the human body and the environment, where small electrode gaps in combination with mechanical amplification by the sensor structure result in a high sensitivity.
Abstract: A silicon six-axis force–torque sensor is designed and realized to be used for measurement of the power transfer between the human body and the environment. Capacitive read-out is used to detect all axial force components and all torque components simultaneously. Small electrode gaps in combination with mechanical amplification by the sensor structure result in a high sensitivity. The miniature sensor has a wide force range of up to 50 N in normal direction, 10 N in shear direction and 25 N mm of maximum torque around each axis.

Journal ArticleDOI
TL;DR: In this article, a wet-on-wet (WoW) printing process was proposed, where a subsequent layer can be printed on a previous semi-dried (not-sintered) layer.
Abstract: We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process.