scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Pineal Research in 2016"


Journal ArticleDOI
TL;DR: It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet‐to‐be identified basic action(s) of this ancient molecule.
Abstract: Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.

1,045 citations


Journal ArticleDOI
TL;DR: Six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways.
Abstract: Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants.

278 citations


Journal ArticleDOI
TL;DR: Melatonin and its metabolites are broad‐spectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations and its ability to regulate apoptotic processes and ER and mitochondrial activity is reviewed.
Abstract: Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of articular cartilage. As chondrocytes are the only cell type forming the articular cartilage, their gradual loss is the main cause of OA. There is a substantial body of published research that suggests reactive oxygen species (ROS) are major causative factors for chondrocyte damage and OA development. Oxidative stress elicited by ROS is capable of oxidizing and subsequently disrupting cartilage homeostasis, promoting catabolism via induction of cell death and damaging numerous components of the joint. IL-1β and TNF-α are crucial inflammatory factors that play pivotal roles in the pathogenesis of OA. In this process, the mitochondria are the major source of ROS production in cells, suggesting a role of mitochondrial dysfunction in this type of arthritis. This may also be promoted by inflammatory cytokines such as IL-1β and TNF-α which contribute to chondrocyte death. In patients with OA, the expression of endoplasmic reticulum (ER) stress-associated molecules is positively correlated with cartilage degeneration. Melatonin and its metabolites are broad-spectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations. Herein, we review the effects of melatonin on OA, focusing on its ability to regulate apoptotic processes and ER and mitochondrial activity. We also evaluate likely protective effects of melatonin on OA pathogenesis.

221 citations


Journal ArticleDOI
TL;DR: Intatracheal administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung in an LPS‐induced ALI mouse model, and opening a more efficient therapeutic approach for treating ALI.
Abstract: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. Melatonin is a well-known anti-inflammatory molecule, which has proven to be effective in ALI induced by many conditions. Emerging studies suggest that the NLRP3 inflammasome plays a critical role during ALI. How melatonin directly blocks activation of the NLRP3 inflammasome in ALI remains unclear. In this study, using an LPS-induced ALI mouse model, we found intratracheal (i.t.) administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung. During ALI, the NLRP3 inflammasome is significantly activated with a large amount of IL-1β and the activated caspase-1 occurring in the lung. Melatonin inhibits the activation of the NLRP3 inflammasome by both suppressing the release of extracellular histones and directly blocking histone-induced NLRP3 inflammasome activation. Notably, i.t. route of melatonin administration opens a more efficient therapeutic approach for treating ALI.

200 citations


Journal ArticleDOI
TL;DR: It is hypothesize that the alternate melatonin synthetic pathway may be more important in certain organisms and under certain conditions, and evidence strongly supports that this alternate pathway prevails in some plants, bacteria, and, perhaps, yeast and may also occur in animals.
Abstract: Melatonin is a phylogenetically ancient molecule. It is ubiquitously present in almost all organisms from primitive photosynthetic bacteria to humans. Its original primary function is presumable to be that of an antioxidant with other functions of this molecule having been acquired during evolution. The synthetic pathway of melatonin in vertebrates has been extensively studied. It is common knowledge that serotonin is acetylated to form N-acetylserotonin by arylalkylamine N-acetyltransferase (AANAT) or arylamine N-acetyltransferase (SNAT or NAT) and N-acetylserotonin is, subsequently, methylated to melatonin by N-acetylserotonin O-methyltransferase (ASMT; also known as hydroxyindole-O-methyltransferase, HIOMT). This is referred to as a classic melatonin synthetic pathway. Based on new evidence, we feel that this classic melatonin pathway is not generally the prevailing route of melatonin production. An alternate pathway is known to exist, in which serotonin is first O-methylated to 5-methoxytryptamine (5-MT) and, thereafter, 5-MT is N-acetylated to melatonin. Here, we hypothesize that the alternate melatonin synthetic pathway may be more important in certain organisms and under certain conditions. Evidence strongly supports that this alternate pathway prevails in some plants, bacteria, and, perhaps, yeast and may also occur in animals.

191 citations


Journal ArticleDOI
TL;DR: It is reported that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C, and that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants.
Abstract: Melatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C. Foliar pretreatment with an optimal dose of melatonin (10 μmol/L) or the overexpression of N-acetylserotonin methyltransferase (ASMT) gene effectively ameliorated heat-induced photoinhibition and electrolyte leakage in tomato plants. Both exogenous melatonin treatment and endogenous melatonin manipulation by overexpression of ASMT decreased the levels of insoluble and ubiquitinated proteins, but enhanced the expression of heat-shock proteins (HSPs) to refold denatured and unfolded proteins under heat stress. Meanwhile, melatonin also induced expression of several ATG genes and formation of autophagosomes to degrade aggregated proteins under the same stress. Proteomic profile analyses revealed that protein aggregates for a large number of biological processes accumulated in wild-type plants. However, exogenous melatonin treatment or overexpression of ASMT reduced the accumulation of aggregated proteins. Aggregation responsive proteins such as HSP70 and Rubisco activase were preferentially accumulated and ubiquitinated in wild-type plants under heat stress, while melatonin mitigated heat stress-induced accumulation and ubiquitination of aggregated proteins. These results suggest that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants.

184 citations


Journal ArticleDOI
TL;DR: Melatonin is involved in Se‐induced Cd tolerance via the regulation of Cd detoxification and the influence of three forms of Se on the biosynthesis of melatonin and the tolerance against Cd in tomato plants is investigated.
Abstract: Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.

179 citations


Journal ArticleDOI
TL;DR: It is suggested that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti‐fibrotic treatment.
Abstract: Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.

154 citations


Journal ArticleDOI
TL;DR: Melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome‐associated apoptosis, which is reported to possess substantial anti‐inflammatory properties.
Abstract: Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti-inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood-brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-6 (IL-6); these changes were also associated with an increase in the anti-apoptotic factor (Bcl2) and reduction in the pro-apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome-associated apoptosis.

140 citations


Journal ArticleDOI
TL;DR: A role for melatonin is highlighted in protecting against TBI‐triggered immunopathology, which is accomplished by negatively regulating inflammation activation and IL‐1β secretion via the autophagy of damaged mitochondria.
Abstract: Melatonin functions as a crucial mediator of sterile neuroinflammation; however, the underlying mechanisms remain poorly understood. Dysfunctional mitochondria, a main source of reactive oxygen species, are impacted in inflammation activation. This study aimed to examine the effect of melatonin on inflammation via elimination of damaged mitochondria after controlled cortical impact, an in vivo model of traumatic brain injury (TBI). Here, we demonstrated that inhibition of mitophagy, the selective degradation of damaged mitochondria by autophagy, markedly enhanced inflammation induced by TBI. Melatonin treatment activated mitophagy through the mTOR pathway, then to attenuate TBI-induced inflammation. Furthermore, treatment with melatonin significantly ameliorated neuronal death and behavioral deficits after TBI, while 3-methyladenine reversed this effect by inhibiting mitophagy. Taken together, these results highlight a role for melatonin in protecting against TBI-triggered immunopathology, which is accomplished by negatively regulating inflammation activation and IL-1β secretion via the autophagy of damaged mitochondria.

134 citations


Journal ArticleDOI
TL;DR: In this work, insights are provided into the physiological and molecular mechanisms underlying melatonin‐mediated fruit ripening as well as the anthocyanin formation process in tomato fruit at the protein concentration level, and it is revealed that a senescence‐related protein was downregulated in the M50 fruit, while a cell apoptosis inhibitor (API5) protein was upregulated.
Abstract: To better understand the function of melatonin in tomato fruit ripening and quality improvement, a label-free quantitation method was used to investigate the proteins that differ between the control (CK) and 50 μm melatonin treatment (M50) fruits. Proteomics data identified 241 proteins that were significantly influenced by melatonin. These proteins were involved in several ripening-related pathways, including cell wall metabolism, oxidative phosphorylation, carbohydrate, and fatty acid metabolism. Moreover, the application of exogenous melatonin increased eight proteins that are related to anthocyanin accumulation during fruit ripening. Additionally, the affected protein levels correlated with the corresponding gene transcript levels. Further, the total anthocyanin content from M50 increased by 52%, 48%, and 50% at 5, 8, and 13 DAT (day after melatonin treatment), respectively. The melatonin-mediated promotion of fruit ripening and quality might be due to the altered proteins involved in processes associated with ripening. In this work, we indicated that a senescence-related protein was downregulated in the M50 fruit, while a cell apoptosis inhibitor (API5) protein was upregulated. In addition, peroxidases (POD9, POD12, peroxidase p7-like) and catalase (CAT3) significantly increased in the M50 fruits. Based on the previous studies and our data, we inferred that melatonin might be positively related to fruit ripening but negatively related to fruit senescence. This research provides insights into the physiological and molecular mechanisms underlying melatonin-mediated fruit ripening as well as the anthocyanin formation process in tomato fruit at the protein concentration level, and we reveal possible candidates for regulation of anthocyanin formation during fruit ripening.

Journal ArticleDOI
TL;DR: It is suggested that the exogenous melatonin application enhances the drought priming‐induced cold tolerance of barley by modulating subcellular antioxidant systems and ABA levels in barley.
Abstract: Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley.

Journal ArticleDOI
TL;DR: The results suggest that, although with different strengths, chronoinflammaging constitutes the biochemical substrate of aging and sepsis, and identifies the NLRP3 inflammasome as a new molecular target for melatonin, providing a rationale for its use inNLRP3‐dependent diseases.
Abstract: The connection between the innate immune system, clock genes, and mitochondrial bioenergetics was analyzed during aging and sepsis in mouse heart. Our results suggest that the sole NF-κB activation does not explain the inflammatory process underlying aging; the former also triggers the NLRP3 inflammasome that enhances caspase-1-dependent maturation of IL-1β. In this way, aged mice enter into a vicious cycle as IL-1β further activates the NF-κB/NLRP3 inflammasome link. The origin of NF-κB activation was related to the age-dependent Bmal1/Clock/RORα/Rev-Erbα loop disruption, which lowers NAD(+) levels, reducing the SIRT1 deacetylase ability to inactivate NF-κB. Consequently, NF-κB binding to DNA increases, raising the formation of proinflammatory mediators and inducing mitochondrial impairment. The cycle is then closed with the subsequent NLRP3 inflammasome activation. This paired contribution of the innate immune pathways serves as a catalyst to magnify the response to sepsis in aged compared with young mice. Melatonin administration blunted the septic response, reducing inflammation and oxidative stress, and enhancing mitochondrial function at the levels of nonseptic aged mice, but it did not counteract the age-related inflammation. Together, our results suggest that, although with different strengths, chronoinflammaging constitutes the biochemical substrate of aging and sepsis, and identifies the NLRP3 inflammasome as a new molecular target for melatonin, providing a rationale for its use in NLRP3-dependent diseases.

Journal ArticleDOI
TL;DR: Melatonin at the pharmacologic concentration considerably reduced the migration and invasion of RCC cells and suppressed metastasis of Caki‐1 cells in spontaneous and experimental metastasis animal models, suggesting that melatonin has potential therapeutic applications for metastastic RCC.
Abstract: Renal cell carcinoma (RCC) is the most lethal of all urological malignancies because of its potent metastasis potential. Melatonin exerts multiple tumor-suppressing activities through antiproliferative, proapoptotic, and anti-angiogenic actions and has been tested in clinical trials. However, the antimetastastic effect of melatonin and its underlying mechanism in RCC are unclear. In this study, we demonstrated that melatonin at the pharmacologic concentration (0.5-2 mm) considerably reduced the migration and invasion of RCC cells (Caki-1 and Achn). Furthermore, we found that melatonin suppressed metastasis of Caki-1 cells in spontaneous and experimental metastasis animal models. Mechanistic investigations revealed that melatonin transcriptionally inhibited MMP-9 by reducing p65- and p52-DNA-binding activities. Moreover, the Akt-mediated JNK1/2 and ERK1/2 signaling pathways were involved in melatonin-regulated MMP-9 transactivation and cell motility. Clinical samples revealed an inverse correlation between melatonin receptor 1A (MTNR1A) and MMP-9 expression in normal kidney and RCC tissues. In addition, a higher survival rate was found in MTNR1A(high) /MMP-9(low) patients than in MTNR1A(low) /MMP-9(high) patients. Overall, our results provide new insights into the role of melatonin-induced molecular regulation in suppressing RCC metastasis and suggest that melatonin has potential therapeutic applications for metastastic RCC.

Journal ArticleDOI
TL;DR: Using an array of MAP kinase kinase (MKK) knockout mutants, it is found that four MKKs are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin‐mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9‐MPK3/6 cascades.
Abstract: Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense-related genes. To examine whether the melatonin-mediated pathogen resistance is associated with mitogen-activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho-p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2-hydroxymelatonin and N-acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G-protein signaling, because melatonin efficiently activated two MAPKs in a G-protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense-related gene expression and pathogen resistance relative to wild-type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin-mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9-MPK3/6 cascades.

Journal ArticleDOI
TL;DR: Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK‐1 inhibition.
Abstract: The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of 'hot' spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment.

Journal ArticleDOI
TL;DR: Melatonin attenuates cisplatin‐induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.
Abstract: Premature ovarian failure (POF) is a major side effect of chemotherapy in young cancer patients. To develop pharmaceutical agents for preserving fertility, it is necessary to understand the mechanisms responsible for chemotherapy-induced follicle loss. Here, we show that treatment with cisplatin, a widely used anticancer drug, depleted the dormant follicle pool in mouse ovaries by excessive activation of the primordial follicles, without inducing follicular apoptosis. Moreover, we show that co-treatment with the antioxidant melatonin prevented cisplatin-induced disruption of the follicle reserve. We quantified the various stages of growing follicles, including primordial, primary, secondary, and antral, to demonstrate that cisplatin treatment alone significantly decreased, whereas melatonin co-treatment preserved, the number of primordial follicles in the ovary. Importantly, analysis of the PTEN/AKT/FOXO3a pathway demonstrated that melatonin significantly decreased the cisplatin-mediated inhibitory phosphorylation of PTEN, a key negative regulator of dormant follicle activation. Moreover, melatonin prevented the cisplatin-induced activating phosphorylation of AKT, GSK3β, and FOXO3a, all of which trigger follicle activation. Additionally, we show that melatonin inhibited the cisplatin-induced inhibitory phosphorylation and nuclear export of FOXO3a, which is required in the nucleus to maintain dormancy of the primordial follicles. These findings demonstrate that melatonin attenuates cisplatin-induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.

Journal ArticleDOI
TL;DR: Evidence is provided that in vitro melatonin strongly enhances CIS‐induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.
Abstract: Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.

Journal ArticleDOI
TL;DR: This study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator ofmelatonin‐exerted cardioprotection; melatonin‐RORα axis signaling thus appears important in protection against ischemic heart injury.
Abstract: Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.

Journal ArticleDOI
TL;DR: Melatonin supplementation in vitrification solution or in vitro maturation or vitrification medium with 10−9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Abstract: Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.

Journal ArticleDOI
TL;DR: It is demonstrated that the pro‐oxidant capacity of melatonin and its impact on mitochondria stability and turnover via mitophagy increase sensitivity to the cytotoxic effect of sorafenib.
Abstract: Effects of sorafenib in hepatocellular carcinoma (HCC) are frequently transient due to tumor-acquired resistance, a phenotype that could be targeted by other molecules to reduce this adaptive response. Because melatonin is known to exert antitumor effects in HCC cells, this study investigated whether and how melatonin reduces resistance to sorafenib. Susceptibility to sorafenib (10 nmol/L to 50 μmol/L) in the presence of melatonin (1 and 2 mmol/L) was assessed in HCC cell lines HepG2, HuH7, and Hep3B. Cell viability was reduced by sorafenib from 1 μmol/L in HepG2 or HuH7 cells, and 2.5 μmol/L in Hep3B cells. Co-administration of melatonin and sorafenib exhibited a synergistic cytotoxic effect on HepG2 and HuH7 cells, while Hep3B cells displayed susceptibility to doses of sorafenib that had no effect when administrated alone. Co-administration of 2.5 μmol/L sorafenib and 1 mmol/L melatonin induced apoptosis in Hep3B cells, increasing PARP hydrolysis and BAX expression. We also observed an early colocalization of mitochondria with lysosomes, correlating with the expression of mitophagy markers PINK1 and Parkin and a reduction of mitofusin-2 and mtDNA compared with sorafenib administration alone. Moreover, increased reactive oxygen species production and mitochondrial membrane depolarization were elicited by drug combination, suggesting their contribution to mitophagy induction. Interestingly, Parkin silencing by siRNA to impair mitophagy significantly reduced cell killing, PARP cleavage, and BAX expression. These results demonstrate that the pro-oxidant capacity of melatonin and its impact on mitochondria stability and turnover via mitophagy increase sensitivity to the cytotoxic effect of sorafenib.

Journal ArticleDOI
TL;DR: Melatonin is effective in reducing maternal LPS‐induced neonatal inflammation and related brain injury and its role as a prophylactic/therapeutic drug deserves to be investigated by clinical studies.
Abstract: Maternal infection/inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We investigated the modulating effect of prenatal melatonin on the neonatal brain inflammation process resulting from maternal intraperitoneal (i.p.) lipopolysaccharide (LPS) injections. LPS (300 μg/kg) was administered to pregnant rats at gestational days 19 and 20. Melatonin (5 mg/kg) was administered i.p. at the same time as LPS. Melatonin counteracted the LPS sensitization to a second ibotenate-induced excitotoxic insult performed on postnatal day (PND) 4. As melatonin succeeded in reducing microglial activation in neonatal brain at PND1, pathways previously implicated in brain inflammation regulation, such as endoplasmic reticulum (ER) stress, autophagy and silent information regulator 1 (SIRT1), a melatonin target, were assessed at the same time-point in our experimental groups. Results showed that maternal LPS administrations resulted in an increase in CHOP and Hsp70 protein expression and eIF2α phosphorylation, indicative of activation of the unfolded protein response consequent to ER stress, and a slighter decrease in the autophagy process, determined by reduced lipidated LC3 and increased p62 expression. LPS-induced inflammation also reduced brain SIRT1 expression and affected the expression of miR-34a, miR146a, and miR-126. All these effects were blocked by melatonin. Cleaved-caspase-3 apoptosis pathway did not seem to be implicated in the noxious effect of LPS on the PND1 brain. We conclude that melatonin is effective in reducing maternal LPS-induced neonatal inflammation and related brain injury. Its role as a prophylactic/therapeutic drug deserves to be investigated by clinical studies.

Journal ArticleDOI
TL;DR: These results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium‐induced neurotoxicity and that Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.
Abstract: Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.

Journal ArticleDOI
TL;DR: Results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase‐2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR‐mediated oxidative stress.
Abstract: Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress.

Journal ArticleDOI
TL;DR: It is demonstrated that melatonin delays cassava PPD by directly or indirectly maintaining homoeostasis of cellular reactive oxygen species (ROS) and that manipulation of melatonin biosynthesis genes through genetic engineering might prevent cassava root deterioration.
Abstract: Melatonin reportedly increases abiotic and biotic stress tolerance in plants, but information on its in vivo effects during postharvest physiological deterioration (PPD) in cassava is limited. In this study, we investigated the effect of melatonin in regulating cassava PPD. Treatment with 500 mg/L melatonin significantly delayed cassava PPD and reduced the accumulation of hydrogen peroxide (H2O2) while increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), but not ascorbate peroxidase (APX). Transcript analysis further showed that expression of copper/zinc SOD (MeCu/ZnSOD), MeCAT1, glutathione peroxidase (MeGPX), peroxidase 3 (MePX3), and glutathione S-transferases (MeGST) was higher in cassava roots sliced treated with 500 mg/L melatonin than in those not exposed to exogenous melatonin. These data demonstrate that melatonin delays cassava PPD by directly or indirectly maintaining homoeostasis of cellular reactive oxygen species (ROS). We also found that accumulation of endogenous melatonin and the transcript levels of melatonin biosynthesis genes changed dynamically during the PPD process. This finding suggested that endogenous melatonin acts as a signal modulator for maintaining cassava PPD progression and that manipulation of melatonin biosynthesis genes through genetic engineering might prevent cassava root deterioration.

Journal ArticleDOI
TL;DR: The results demonstrated that melatonin promoted functional survival of AD‐MSCs in infarcted heart and provoked a synergetic effect with AD‐ MSCs to restore heart function and support the promise of melatonin as a novel strategy to improve MSC‐based therapy for IHD, possibly through SIRT1 signaling evocation.
Abstract: Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation.

Journal ArticleDOI
Chao Li1, Bowen Liang1, Cong Chang1, Zhiwei Wei1, Shasha Zhou1, Fengwang Ma1 
TL;DR: It is indicated that melatonin can regulate the ROS signal and activate the CBL1–CIPK23 pathway to regulate the expression of a potassium channel protein gene, thereby promoting the absorption of potassium ions.
Abstract: Melatonin mediates many physiological processes in plants. We investigated its role in regulating growth, potassium uptake, and root system architecture under three types of stress: salinity or a deficiency of all nutrients in Malus hupehensis Rehd., as well as a K deficiency in Malus rockii Rehd. Each treatment caused a reduction in growth rates and disrupted the absorption of potassium. However, pretreatment with 0.1 mmol/L melatonin significantly alleviated such inhibitions. The addition of melatonin also upregulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdDHAR1, MdDHAR2, MdMDHAR, and MdcGR) and helped decrease the accumulation of H2 O2 while improving the expression of K transporters and genes for the CBL1-CIPK23 pathway. These results indicated that melatonin can regulate the ROS signal and activate the CBL1-CIPK23 pathway to regulate the expression of a potassium channel protein gene, thereby promoting the absorption of potassium ions. Our findings demonstrate that inducing melatonin production is an important mechanism for plant defenses that can serve as a platform for possible applications in agricultural or related fields of research.

Journal ArticleDOI
TL;DR: AtASMT transcripts were induced by cadmium treatment in Arabidopsis followed by increased melatonin synthesis and its ectopic overexpression in rice resulted in increased ASMT enzyme activity and melatonin production, indicating the involvement of AtASMT inmelatonin synthesis.
Abstract: The N-acetylserotonin O-methyltransferase (ASMT) gene encodes the enzyme that catalyzes the conversion of N-acetylserotonin to melatonin as the last step in melatonin biosynthesis. The first plant ASMT gene to be cloned was from rice. An orthologous gene encoding a protein with ASMT activity and only 39.7% amino acid sequence identity to the rice ASMT protein was recently isolated from apple (Malus zumi). The low homology of the apple ASMT sequence prompted us to screen the Arabidopsis genome for a homologous ASMT gene. The At4g35160 gene exhibited the highest sequence identity (31%) to the rice ASMT gene, followed by the At1g76790 gene with 29% sequence identity. We purified recombinant proteins expressed from the two Arabidopsis genes. The At4g35160 recombinant protein exhibited ASMT enzyme activity, but the At1g76790 recombinant protein did not; thus, we designated At4g35160 as an Arabidopsis thaliana ASMT (AtASMT) gene. The AtASMT protein catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine with Vmax values of 0.11 and 0.29 pkat/mg protein, respectively. However, AtASMT exhibited no caffeic acid O-methyltransferase activity, suggesting that its function was highly specific to melatonin synthesis. AtASMT transcripts were induced by cadmium treatment in Arabidopsis followed by increased melatonin synthesis. Similar to other ASMT proteins, AtASMT was localized in the cytoplasm and its ectopic overexpression in rice resulted in increased ASMT enzyme activity and melatonin production, indicating the involvement of AtASMT in melatonin synthesis.

Journal ArticleDOI
TL;DR: Melatonin suppresses the motility of NPC by regulating TPA‐induced MMP‐9 gene expression via inhibiting SP‐1‐DNA binding ability, providing a functional link between melatonin‐mediated SP‐ 1 regulation and the antimetastatic actions of melatonin on nasopharyngeal carcinoma.
Abstract: Nasopharyngeal carcinoma (NPC), a disease common in the South-East Asian population, has high lymph node metastatic ability. Melatonin, an endogenously produced substance present in animals, plants, fungi, and bacteria, has oncostatic activity via several mechanisms. The molecular mechanisms involved in melatonin-mediated tumor inhibitory potential are not completely defined. Here, we show that melatonin treatment inhibits TPA-induced cell motility by regulating the matrix metalloproteinase-9 (MMP-9) expression in NPC. We also identified the signaling cascade through which melatonin inhibits MMP-9 expression; this involves melatonin regulating the binding activity of the transcription factor specificity protein-1 (SP-1)-DNA. Our mechanistic analysis further reveals that the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway is involved in the melatonin-mediated tumor suppressor activity. Furthermore, the findings indicate a functional link between melatonin-mediated MMP-9 regulation and tumor suppressing ability and provide new insights into the role of melatonin-induced molecular and epigenetic regulation of tumor growth. Thus, we conclude that melatonin suppresses the motility of NPC by regulating TPA-induced MMP-9 gene expression via inhibiting SP-1-DNA binding ability. The results provide a functional link between melatonin-mediated SP-1 regulation and the antimetastatic actions of melatonin on nasopharyngeal carcinoma.

Journal ArticleDOI
TL;DR: The information reviewed here should be significant to understanding the protective role of melatonin against fibrosis, contribute to the design of further experimental studies related to melatonin and the fibrotic response and shed light on a potential treatment for fibrosis.
Abstract: Fibrosis is a common occurrence following organ injury and failure. To date, there is no effective treatment for this condition. Melatonin targets numerous molecular pathways, a consequence of its antioxidant and anti-inflammatory actions that reduce excessive fibrosis. Herein, we review the multiple protective effects of melatonin against fibrosis. There exist four major phases of the fibrogenic response including primary injury to the organ, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. Melatonin regulates each of these phases. Additionally, melatonin reduces fibrosis levels in numerous organs. Melatonin exhibits its anti-fibrosis effects in heart, liver, lung, kidney, and other organs. In addition, adhesions which occur following surgical procedures are also inhibited by melatonin. The information reviewed here should be significant to understanding the protective role of melatonin against fibrosis, contribute to the design of further experimental studies related to melatonin and the fibrotic response and shed light on a potential treatment for fibrosis.