scispace - formally typeset
Search or ask a question

Showing papers in "Photonics in 2014"


Journal ArticleDOI
Jifeng Liu1
TL;DR: A review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation can be found in this paper, where the authors discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW) structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties.
Abstract: Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW) structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs), electroabsorption modulators (EAMs), and laser diodes (LDs), and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

86 citations


Journal ArticleDOI
TL;DR: The updated model of LSFG-NAVI demonstrates a better spatial resolution of the blood flow map of human ocular fundus, and the analysis software can separately calculate MBRs in the blood vessels and tissues of an entire ONH and the measurements have good reproducibility.
Abstract: Laser speckle flowgraphy (LSFG) allows for quantitative estimation of blood flow in the optic nerve head (ONH), choroid and retina, utilizing the laser speckle phenomenon. The basic technology and clinical applications of LSFG-NAVI, the updated model of LSFG, are summarized in this review. For developing a commercial version of LSFG, the special area sensor was replaced by the ordinary charge-coupled device camera. In LSFG-NAVI, the mean blur rate (MBR) has been introduced as a new parameter. Compared to the original LSFG model, LSFG-NAVI demonstrates a better spatial resolution of the blood flow map of human ocular fundus. The observation area is 24 times larger than the original system. The analysis software can separately calculate MBRs in the blood vessels and tissues (capillaries) of an entire ONH and the measurements have good reproducibility. The absolute values of MBR in the ONH have been shown to linearly correlate with the capillary blood flow. The Analysis of MBR pulse waveform provides parameters including skew, blowout score, blowout time, rising and falling rates, flow acceleration index, acceleration time index, and resistivity index for comparing different eyes. Recently, there have been an increasing number of reports on the clinical applications of LSFG-NAVI to ocular diseases, including glaucoma, retinal and choroidal diseases.

86 citations


Proceedings ArticleDOI
TL;DR: In this article, selected applications of digital holography, e.g., reconstruction of 3D objects, microscopy, interferometry, etc., are discussed, with emphasis on recent work in the area, including multi-wavelength digital holographic, compressive sensing, and transport of intensity.
Abstract: Selected applications of digital holography, e.g., reconstruction of 3D objects, microscopy, interferometry, etc. will be discussed, with emphasis on our recent work in the area, including multi-wavelength digital holography, compressive sensing, and transport of intensity.

66 citations


Journal ArticleDOI
TL;DR: An overview of SHD performance is given, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD) and those using space-divisionmultiplexedPTs (SDM- SHD).
Abstract: We review work on self-homodyne detection (SHD) for optical communication systems. SHD uses a transmitted pilot-tone (PT), originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give an overview of SHD performance, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and summarize the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD) and those using space-division multiplexed PTs (SDM-SHD). For PDM-SHD, we review the extensive work on the transmission of advanced modulation formats and techniques to minimize the trade-off with spectral efficiency, as well as recent work on digital SHD, where the SHD receiver is combined with an polarization-diversity ID front-end receiver to provide both polarization and modulation format alignment. We then focus on SDM-SHD systems, describing experimental results using multi-core fibers (MCFs) with up to 19 cores, including high capacity transmission with broad-linewidth lasers and experiments incorporating SDM-SHD in networking. Additionally, we discuss the requirement for polarization tracking of the PTs at the receiver and path length alignment and review some variants of SHD before outlining the future challenges of self-homodyne optical transmission and gaps in current knowledge.

56 citations


Journal ArticleDOI
TL;DR: In this article, three main linearization methods (i.e., electrical analog linearization, optical linearization and electrical digital linearization) for linearizing RoF transmission are presented and compared.
Abstract: Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

49 citations


Journal ArticleDOI
TL;DR: An exhaustive summary is given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs) for telecom companies and international standardization compliance.
Abstract: In the very last years, optical access networks are growing very rapidly, from both the network operators and the research interests points of view. Fiber To The Home (FTTH) is already a reality in plenty of real contexts and there has been a further stimulus to the proposal of new solutions and the investigation of new possibilities, in order to optimize network performance and reduce capital and operational expenditure. A complete and systematic overview of passive optical access networks is presented in this paper, concerning both the hot research topics and the main operative issues about the design guidelines and the deployment of Passive Optical Networks (PON) architectures, nowadays the most commonly implemented approach to realize optical fiber links in the access networks. A comparison of advantages and disadvantages of different multiplexing techniques is discussed, with specific reference to WDM-based networks, almost universally considered as the enabling technology for future proof bandwidth requirements. An exhaustive summary is also given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs) for telecom companies and international standardization compliance.

43 citations


Journal ArticleDOI
TL;DR: In this paper, the authors adopt a uniform optimization transfer framework for these regularization methods in FMT and compare their individual, as well as the combined effects on both small, localized targets, such as tumors in the early stage, and large targets such as liver.
Abstract: In vivo fluorescence molecular tomography (FMT) has been a popular functional imaging modality in research labs in the past two decades. One of the major difficulties of FMT lies in the ill-posed and ill-conditioned nature of the inverse problem in reconstructing the distribution of fluorophores inside objects. The popular regularization methods based on L2, L1 and total variation (TV ) norms have been applied in FMT reconstructions. The non-convex Lq(0 < q < 1) semi-norm and Log function have also been studied recently. In this paper, we adopt a uniform optimization transfer framework for these regularization methods in FMT and compare their individual, as well as the combined effects on both small, localized targets, such as tumors in the early stage, and large targets, such as liver. Numerical simulation studies and phantom experiments have been carried out, and we found that Lq with q near 1/2 performs the best in reconstructing small targets, while joint L2 and Log performs the best for large targets.

31 citations


Journal ArticleDOI
TL;DR: In this article, a review of microstructured optical fiber sensors developed in recent years for liquid RI sensing is presented, which is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years.
Abstract: This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications.

28 citations


Journal ArticleDOI
Chao Wang1
TL;DR: In this article, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing.
Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well.

26 citations


Journal ArticleDOI
Xiaofeng Zhang1
TL;DR: The author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
Abstract: Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle - light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.

21 citations


Journal ArticleDOI
TL;DR: In this paper, coal char derived few layer graphene anodes for lithium ion batteries were investigated by charge/discharge curves and discharge capacity at different current densities, and the graphene anode maintained the reversible capacity at ~0.025, 0.013, and 0.007 mAh/cm2 at a current density of 10, 30, and 50 µA/ cm2, respectively.
Abstract: Few-layer graphene films were synthesized through chemical vapor deposition technique using coal char as solid carbon source. Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and selected area electron diffraction were used to characterize the graphene films. The electrochemical performance of the coal char derived few layer graphene anodes for lithium ion batteries was investigated by charge/discharge curves and discharge capacity at different current densities. The graphene anode maintained the reversible capacity at ~0.025, 0.013, and 0.007 mAh/cm2 at a current density of 10, 30, and 50 µA/cm2, respectively. The coal char derived graphene anodes show potential applications in thin film batteries for nanoelectronics.

Journal ArticleDOI
TL;DR: In this article, a fiber-based polarization diversity detection (PDD) scheme for polarization sensitive optical coherence tomography (PSOCT) is presented, which uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) outputs.
Abstract: We present a new fiber-based polarization diversity detection (PDD) scheme for polarization sensitive optical coherence tomography (PSOCT). This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

Journal ArticleDOI
TL;DR: Time-resolved fluorescence (TRF) provides fluorescence lifetime profiles of the targeted fluorophores and has been demonstrated to offer supplementary information in drug-molecular interactions and cell responses compared to steady-state intensity acquisition as discussed by the authors.
Abstract: Photodynamic therapy (PDT) has been used clinically for treating various diseases including malignant tumors. The main advantages of PDT over traditional cancer treatments are attributed to the localized effects of the photochemical reactions by selective illumination, which then generate reactive oxygen species and singlet oxygen molecules that lead to cell death. To date, over- or under-treatment still remains one of the major challenges in PDT due to the lack of robust real-time dose monitoring techniques. Time-resolved fluorescence (TRF) provides fluorescence lifetime profiles of the targeted fluorophores. It has been demonstrated that TRF offers supplementary information in drug-molecular interactions and cell responses compared to steady-state intensity acquisition. Moreover, fluorescence lifetime itself is independent of the light path; thus it overcomes the artifacts given by diffused light propagation and detection geometries. TRF in PDT is an emerging approach, and relevant studies to date are scattered. Therefore, this review mainly focuses on summarizing up-to-date TRF studies in PDT, and the effects of PDT dosimetric factors on the measured TRF parameters. From there, potential gaps for clinical translation are also discussed.

Journal ArticleDOI
TL;DR: In this article, the recorded spectra are split into two to several sub-spectra and the lateral sampling is then increased by the same factor to increase the field of view of OCT angiography.
Abstract: Optical angiography systems based on optical coherence tomography (OCT) require dense sampling in order to maintain good vascular contrast. We demonstrate a way to gain acquisition speed and spatial sampling by using spectral splitting with a swept source OCT system. This method splits the recorded spectra into two to several subspectra. Using continuous lateral scanning, the lateral sampling is then increased by the same factor. This allows increasing the field of view of OCT angiography, while keeping the same transverse resolution and measurement time. The performance of our method is demonstrated in vivo at different locations of the human retina and verified quantitatively. Spectral splitting can be applied without any changes in the optical setup, thus offering an easy way to increase the field of view of OCT in general and in particular for OCT angiography.

Journal ArticleDOI
TL;DR: 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) demonstrate the best enhancement factor of ~14× on ITO gratings when compared with Ag NPs on a flat ITO film, and the limit of detection (LOD) of DTNB is as low as 10 pM.
Abstract: We designed and fabricated guided-mode resonance (GMR) gratings on indium-tin-oxide (ITO) thin film to generate a significantly enhanced local electric field for surface-enhanced Raman scattering (SERS) spectroscopy. Ag nanoparticles (NPs) were self-assembled onto the surface of the grating, which can provide a large amount of "hot-spots" for SERS sensing. The ITO gratings also exhibit excellent tolerance to fabrication deviations due to the large refractive index contrast of the ITO grating. Quantitative experimental results of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) demonstrate the best enhancement factor of ~14× on ITO gratings when compared with Ag NPs on a flat ITO film, and the limit of detection (LOD) of DTNB is as low as 10 pM.

Journal ArticleDOI
TL;DR: This paper proposes an energy-efficient Dynamic Bandwidth and Wavelength Allocation mechanism whose objective is to turn off, whenever possible, the unnecessary upstream traffic receivers at the Optical Line Terminal (OLT).
Abstract: One of the main challenges of Passive Optical Networks (PONs) is the resource (bandwidth and wavelength) management. Since it has been shown that access networks consume a significant part of the overall energy of the telecom networks, the resource management schemes should also consider energy minimization strategies. To sustain the increased bandwidth demand of emerging applications in the access section of the network, it is expected that next generation optical access networks will adopt the wavelength division/time division multiplexing (WDM/TDM) technique to increase PONs capacity. Compared with traditional PONs, the architecture of a WDM/TDM-PON requires more transceivers/receivers, hence they are expected to consume more energy. In this paper, we focus on the energy minimization in WDM/TDM-PONs and we propose an energy-efficient Dynamic Bandwidth and Wavelength Allocation mechanism whose objective is to turn off, whenever possible, the unnecessary upstream traffic receivers at the Optical Line Terminal (OLT). We evaluate our mechanism in different scenarios and show that the proper use of upstream channels leads to relevant energy savings. Our proposed energy-saving mechanism is able to save energy at the OLT while maintaining the introduced penalties in terms of packet delay and cycle time within an acceptable range. We might highlight the benefits of our proposal as a mechanism that maximizes the channel utilization. Detailed implementation of the proposed algorithm is presented, and simulation results are reported to quantify energy savings and effects on network performance on different network scenarios.

Journal ArticleDOI
TL;DR: This paper reviews recently proposed low-latency techniques for NG-PONs that require architectural modifications at the remote node or distribution fiber level and highlights advanced network coding and real-time polling based low-Latency techniques that can be implemented in software, enable NG- PONs to carry higher traffic loads and thereby extend their lifetime.
Abstract: The primary design goal of (r)evolutionary NG-PON1&2 was the provisioning of an ever increasing capacity to cope with video-dominated traffic and handle the explosion of mobile data traffic by means of offloading. Recently, however, questions on the future of “post NG-PON2” have surfaced whether to shift its research focus to business and operation related aspects and move access technology into a substantially different direction than continued capacity upgrades. In fact, recent studies indicate that ultimately the major factor limiting the performance of 4G mobile networks is latency rather than capacity of the backhaul. In this paper, we review recently proposed low-latency techniques for NG-PONs that require architectural modifications at the remote node or distribution fiber level and highlight advanced network coding and real-time polling based low-latency techniques that can be implemented in software, enable NG-PONs to carry higher traffic loads and thereby extend their lifetime, and maintain the passive nature of existent optical distribution networks. Furthermore, we elaborate on emerging trends and open challenges for future post NG-PON2 research. To better understand their true potential, we put them into a wider non-technical and historical perspective leading up to a sustainable Third Industrial Revolution (TIR) economy and its underlying Energy Internet.

Journal ArticleDOI
TL;DR: Exposure to low levels of light in the UV spectrum has been found to regulate the growth of the eye and lack of adequate exposure may increase the risk of development and progression of myopia.
Abstract: With decreasing levels of ozone in the atmosphere, we are being exposed to higher levels of ultraviolet radiation (UVR) than ever before. UVR carries higher energy than visible light, and its effects on tissues include DNA damage, gene mutations, immunosuppression, oxidative stress and inflammatory responses. In the eye, UVR is strongly associated with the development of basal and squamous cell carcinoma of the eyelid, pterygium, photokeratitis, climatic droplet keratopathy, ocular surface squamous neoplasia, cataracts, and uveal melanoma, and is weakly associated with age-related macular degeneration. Despite overwhelming evidence regarding the deleterious effects on UVR, public health measures to encourage UV protection of the eyes is generally lacking. Options for photoprotection include sunglasses, wide brim hats, windshields, plastic films for side windows in cars, UV blocking contact lenses, and following the UV Index report daily. The American National Standards Institute currently has regulations regarding properties of UV blocking sunglasses; however, compliance in the US is not mandatory. On the other hand, UVR does have therapeutic applications in the eye, particularly, riboflavin activated by ultraviolet A light (UVA) radiation is used clinically to slow the progression of keratoconus, post-LASIK keratectasia, and bullous keratopathy by crosslinking corneal collagen fibers. Additionally, riboflavin activated by UVA has been shown to have antibacterial, antiviral, and antiparasitic effects. This is clinically relevant in the treatment of infectious keratitis. Finally, exposure to low levels of light in the UV spectrum has been found to regulate the growth of the eye and lack of adequate exposure may increase the risk of development and progression of myopia.

Proceedings ArticleDOI
TL;DR: In this article, a simple limited measurement Diffuse Optical Tomographic (DOT) system is developed for scanning region of interest, where the authors present simulation and experimental results of the system.
Abstract: A simple limited measurement Diffuse Optical Tomographic (DOT) System is developed for scanning region of interest. Simulation and experimental results are presented. The approach is very encouraging and that could pave the way for the functional DOT system.

Journal ArticleDOI
TL;DR: In this article, the authors consider nonlinear dimers and trimers embedded within a linear Schrodinger lattice where the nonlinear sites are of saturable type and examine the stationary states of such chains in the form of plane waves.
Abstract: In the present paper we consider nonlinear dimers and trimers (more generally, oligomers) embedded within a linear Schrodinger lattice where the nonlinear sites are of saturable type. We examine the stationary states of such chains in the form of plane waves, and analytically compute their reflection and transmission coefficients through the nonlinear oligomer, as well as the corresponding rectification factors which clearly illustrate the asymmetry between left and right propagation in such systems. We examine not only the existence but also the dynamical stability of the plane wave states. Lastly, we generalize our numerical considerations to the more physically relevant case of Gaussian initial wavepackets and confirm that the asymmetry in the transmission properties also persists in the case of such wavepackets.

Proceedings ArticleDOI
TL;DR: In this paper, a photonic crystal waveguide with circular air holes of diameter 400nm was used to measure sulphuric acid concentration using the variation of electric field with respect to change in sulphur acid concentrations.
Abstract: Sensing of sulphuric acid concentration using photonic crystal waveguide with circular air holes of diameter 400nm. The principle of measurement is based on variation of electric field with respect to change in sulphuric acid concentrations

Journal ArticleDOI
TL;DR: In this article, the design and realization of grating instruments to handle and condition coherent ultrafast pulses in the extreme ultraviolet spectral region are discussed, where the main application of such instruments is the spectral selection of high-order laser harmonics and free-electron-laser pulses in femtosecond time scale.
Abstract: The design and realization of grating instruments to handle and condition coherent ultrafast pulses in the extreme ultraviolet spectral region are discussed. The main application of such instruments is the spectral selection of high-order laser harmonics and free-electron-laser pulses in the femtosecond time scale. Broad-band monochromators require the use of diffraction gratings at grazing incidence. Here, we discuss two configurations useful for the realization of grating monochromator with ultrafast response: the single-grating design, applied to high-order laser harmonics, and the time-delay-compensated configuration with two gratings, applied to free-electron lasers.

Journal ArticleDOI
TL;DR: To establish feasibility of obtaining 3-D images in teeth using MFMT, molecular contrast was simulated using a dye-filled capillary that was placed in the lower half of human tooth ex vivo, and results demonstrate the potential of MFMT to retrieve molecular contrast in 3D in highly scattering tissues, such as teeth.
Abstract: Some dental lesions are difficult to detect with traditional anatomical imaging methods, such as, with visual observation, dental radiography and X-ray computed tomography (CT). Therefore, we investigated the viability of using an optical imaging technique, Mesoscopic Fluorescence Molecular Tomography (MFMT) to retrieve molecular contrast in dental samples. To establish feasibility of obtaining 3-D images in teeth using MFMT, molecular contrast was simulated using a dye-filled capillary that was placed in the lower half of human tooth ex vivo. The dye and excitation wavelength were chosen to be excited at 650–660 nm in order to simulate a carious lesion. The location of the capillary was varied by changing the depth from the surface at which the dye, at various concentrations, was introduced. MFMT reconstructions were benchmarked against micro-CT. Overall; MFMT exhibited a location accuracy of ~15% and a volume accuracy of ~15%, up to 2 mm depth with moderate dye concentrations. These results demonstrate the potential of MFMT to retrieve molecular contrast in 3-D in highly scattering tissues, such as teeth.

Proceedings ArticleDOI
TL;DR: A greedy RWA (G-RWA) algorithm for multi-domain optical networks to cater to the scheduled traffic is proposed and performance evaluation based on number of connections established and redundant resources utilized shows improved results.
Abstract: A greedy RWA (G-RWA) algorithm for multi-domain optical networks to cater to the scheduled traffic is proposed. Performance evaluation of the strategy based on number of connections established and redundant resources utilized shows improved results

Journal ArticleDOI
TL;DR: This new design improves the axial resolution of a line-scan system while maintaining high imaging rates, and predicts that the multi-point aperture geometry greatly reduces the effects of tissue scatter on image quality.
Abstract: Confocal fluorescence microendoscopy provides high-resolution cellular-level imaging via a minimally invasive procedure, but requires fast scanning to achieve real-time imaging in vivo. Ideal confocal imaging performance is obtained with a point scanning system, but the scan rates required for in vivo biomedical imaging can be difficult to achieve. By scanning a line of illumination in one direction in conjunction with a stationary confocal slit aperture, very high image acquisition speeds can be achieved, but at the cost of a reduction in image quality. Here, the design, implementation, and experimental verification of a custom multi-point aperture modification to a line-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution of a line-scan system while maintaining high imaging rates. In addition, compared to the line-scanning configuration, previously reported simulations predicted that the multi-point aperture geometry greatly reduces the effects of tissue scatter on image quality. Experimental results confirming this prediction are presented.

Journal ArticleDOI
TL;DR: A photonic crystal cavity array realized in a silicon thin film and placed on polydimethlysiloxane (PDMS) is proposed in this article for in-situ sensing of biomedical processes.
Abstract: We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS) as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

Journal ArticleDOI
Nelson Tansu1
TL;DR: In this paper, the authors describe the fundamental concepts and technologies for generating and controlling the properties of light, the concept and technology for transmitting and signal processing of light and the engineering of these technologies for manipulating light applicable for systems implementation.
Abstract: Photonics is a field of sciences that focuses on the pursuit of the understanding basic properties of light, the interaction of light with materials, the fundamental concepts and technologies for generating and controlling the properties of light, the concept and technologies for transmitting and signal processing of light, the engineering of these technologies for manipulating light applicable for systems implementation. The optical light covers the electromagnetic radiation from X-ray, deep ultraviolet, ultraviolet, visible, infrared, and terahertz spectral regimes. Optical sciences is one of the earliest and most important areas of study in physical sciences. The successful understanding of wave optics within the Maxwell’s electromagnetism theory has resulted in the development of physical optics [1,2], and its impact has penetrated areas in other disciplines in cluding chemical and biological sciences, engineering and technology, and medical sciences. The birth of quantum theory emanated from the understanding of the discrete energy of light by Planck and Einstein, and understanding of discrete energy levels in atoms was also attributed to understanding the interaction of light and matter. Quantum electrodynamics and quantum optics formed the basis of the advanced theo ry of light-matter intera ction. Today, fundamental concepts from photonics and optics have been widely implemented in technologies addressing substantial challenges in such fields as communications, medical and health sciences, energy efficiency and renewable energy, homeland security and defense, environmental and sustainable living, among others. Advances in photonics and optics encompass both experimental and theoretical findings in basic sciences, technology, and engineering of light. The advances in both disruptive and progressive technologies in photonics and optics have enabled the development of new technologies which have transformed our life and addressed significan t challenges in society. The journal

Journal ArticleDOI
TL;DR: This work in the area of digitized RF transport is reviewed to address the inherent issues related to analog transport in the fiber-wireless links and compare the transmission performance and energy efficiency with the other transport strategies.
Abstract: Fiber-wireless technology has been actively researched as a potential candidate for next generation broadband wireless signal distribution. Despite the popularity, this hybrid scheme has many technical challenges that impede the uptake and commercial deployment. One of the inherent issues is the transport of the wireless signals over a predominantly digital optical network in today’s telecommunication infrastructure. Many different approaches have been introduced and demonstrated with digitized RF transport of the wireless signals being the most compatible with the existing optical fiber networks. In this paper, we review our work in the area of digitized RF transport to address the inherent issues related to analog transport in the fiber-wireless links and compare the transmission performance and energy efficiency with the other transport strategies.

Journal ArticleDOI
TL;DR: In this article, the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. But the authors focus on a specific fiber of the experiment.
Abstract: A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates ­–0.04 nm/oC and 0.3 nm/oC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.

Journal ArticleDOI
TL;DR: In this paper, the authors compare optical time domain reflectometry (OTDR) techniques based on conventional single impulse, coding and linear frequency chirps concerning their SNR enhancements by measurements in a passive optical network (PON) with a maximum one-way attenuation of 36.6 dB.
Abstract: We compare optical time domain reflectometry (OTDR) techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR) enhancements by measurements in a passive optical network (PON) with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.