scispace - formally typeset
Search or ask a question

Showing papers in "Stem Cells Translational Medicine in 2020"


Journal ArticleDOI
TL;DR: It may be critical to determine MEDs in early trials before proceeding with large clinical trials, as this trend slowed in the past several years and dropped precipitously in 2018.
Abstract: The number of clinical trials using mesenchymal stem cells (MSCs) has increased since 2008, but this trend slowed in the past several years and dropped precipitously in 2018. Previous reports have analyzed MSC clinical trials by disease, phase, cell source, country of origin, and trial initiation date, all of which can be downloaded directly from ClinicalTrials.gov. We have extended analyses to a larger group of 914 MSC trials reported through 2018. To search for potential factors that may influence the design of new trials, we extracted data on routes of administration and dosing from individual ClinicalTrials.gov records as this information cannot be downloaded directly from the database. Intravenous (IV) injection is the most common, least invasive and most reproducible method, accounting for 43% of all trials. The median dose for IV delivery is 100 million MSCs/patient/dose. Analysis of all trials using IV injection that reported positive outcomes indicated minimal effective doses (MEDs) ranging from 70 to 190 million MSCs/patient/dose in 14/16 trials with the other two trials administering much higher doses of at least 900 million cells. Dose-response data showing differential efficacy for improved outcomes were reported in only four trials, which indicated a narrower MED range of 100-150 million MSCs/patient with lower and higher IV doses being less effective. The results suggest that it may be critical to determine MEDs in early trials before proceeding with large clinical trials.

255 citations


Journal ArticleDOI
TL;DR: Mesenchymal stem cells have been proven to have the same effect as their parent cells combined with their numerous advantages over whole cell administration means that they are a promising candidate for clinical application that merits further research.
Abstract: Acute respiratory distress syndrome (ARDS) is a serious and potentially fatal acute inflammatory lung condition which currently has no specific treatments targeting its pathophysiology. However, mesenchymal stem cells have been shown to have very promising therapeutic potential, and recently, it has been established that their effect is largely due to the transfer of extracellular vesicles (EVs). EVs have been shown to transfer a variety of substances such as mRNA, miRNA, and even organelles such as mitochondria in order to ameliorate ARDS in preclinical models. In addition, the fact that they have been proven to have the same effect as their parent cells combined with their numerous advantages over whole cell administration means that they are a promising candidate for clinical application that merits further research.

117 citations


Journal ArticleDOI
TL;DR: The intranasal route of administration of EVs, derived from cytokine‐preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD, and MSC‐EVs polarized in vitro murine primary microglia toward an anti‐inflammatory phenotype suggesting that the neuroProtective effects observed in transgenic mice could result from a positive modulation of the inflammatory status.
Abstract: The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC-EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple-transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine-preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC-EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC-EVs polarized in vitro murine primary microglia toward an anti-inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC-EVs through a noninvasive route and the demonstration of their anti-inflammatory efficacy might accelerate the chance of a translational exploitation of MSC-EVs in AD.

104 citations


Journal ArticleDOI
TL;DR: This review is specifically concentrated on PSC‐updated biological characteristics and their promising therapeutic applications in (pre)clinical practice and their multipotency and sensitivity to local paracrine activity.
Abstract: Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.

99 citations


Journal ArticleDOI
TL;DR: Evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed and how these mechanisms may be conserved between species are discussed.
Abstract: Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.

87 citations


Journal ArticleDOI
TL;DR: Cell therapy with mesenchymal stromal cells (MSCs) is a potential treatment for COVID‐19 ARDS based on preclinical and clinical studies supporting the concept that MSCs modulate the inflammatory and remodeling processes and restore alveolo‐capillary barriers.
Abstract: Severe cases of COVID-19 infection, often leading to death, have been associated with variants of acute respiratory distress syndrome (ARDS). Cell therapy with mesenchymal stromal cells (MSCs) is a potential treatment for COVID-19 ARDS based on preclinical and clinical studies supporting the concept that MSCs modulate the inflammatory and remodeling processes and restore alveolo-capillary barriers. The authors performed a systematic literature review and random-effects meta-analysis to determine the potential value of MSC therapy for treating COVID-19-infected patients with ARDS. Publications in all languages from 1990 to March 31, 2020 were reviewed, yielding 2691 studies, of which nine were included. MSCs were intravenously or intratracheally administered in 117 participants, who were followed for 14 days to 5 years. All MSCs were allogeneic from bone marrow, umbilical cord, menstrual blood, adipose tissue, or unreported sources. Combined mortality showed a favorable trend but did not reach statistical significance. No related serious adverse events were reported and mild adverse events resolved spontaneously. A trend was found of improved radiographic findings, pulmonary function (lung compliance, tidal volumes, PaO2 /FiO2 ratio, alveolo-capillary injury), and inflammatory biomarker levels. No comparisons were made between MSCs of different sources.

83 citations


Journal ArticleDOI
TL;DR: Results indicate that MSC generate multiple direct and indirect, immunologically mediated antimicrobial activities that combine to help eliminate chronic bacterial infections when the cells are administered therapeutically.
Abstract: Mesenchymal stem cells (MSC) have been shown to improve wound healing and suppress inflammatory immune responses. Newer research also indicates that MSC exhibit antimicrobial activity, although the mechanisms underlying this activity have not been fully elucidated. Therefore, we conducted in vitro and in vivo studies to examine the ability of resting and activated MSC to kill bacteria, including multidrug resistant strains. We investigated direct bacterial killing mechanisms and the interaction of MSC with host innate immune responses to infection. In addition, the activity of MSC against chronic bacterial infections was investigated in a mouse biofilm infection model. We found that MSC exhibited high levels of spontaneous direct bactericidal activity in vitro. Moreover, soluble factors secreted by MSC inhibited Staphylococcus aureus biofilm formation in vitro and disrupted the growth of established biofilms. Secreted factors from MSC also elicited synergistic killing of drug-resistant bacteria when combined with several major classes of antibiotics. Other studies demonstrated interactions of activated MSC with host innate immune responses, including triggering of neutrophil extracellular trap formation and increased phagocytosis of bacteria. Finally, activated MSC administered systemically to mice with established S. aureus biofilm infections significantly reduced bacterial numbers at the wound site and improved wound healing when combined with antibiotic therapy. These results indicate that MSC generate multiple direct and indirect, immunologically mediated antimicrobial activities that combine to help eliminate chronic bacterial infections when the cells are administered therapeutically.

75 citations


Journal ArticleDOI
TL;DR: Progress made in MSC‐derived small EV‐based therapy is highlighted by summarizing aspects pertaining to the starting material for MSC expansion, EV production, and isolation methods, studies from preclinical models that have established a foundation of knowledge to support translation into the patient setting, and potential barriers to overcome on the path to clinical application.
Abstract: Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have emerged as a promising form of regenerative therapy and immune modulation. Fundamental advances in our understanding of MSCs and EVs have allowed these fields to merge and create potential cell-free therapy options that are cell-based. EVs contain active cargo including proteins, microRNA, and mRNA species that can impact signaling responses in target cells to modify inflammatory and repair responses. Increasing numbers of preclinical studies in animals with various types of injury models have been published that demonstrate the potential impact of MSC-EV therapy. Although the emergence of registered clinical protocols suggests translation to clinical application has already begun, several barriers to more widespread clinical adoption remain. In this review, we highlight the progress made in MSC-derived small EV-based therapy by summarizing aspects pertaining to the starting material for MSC expansion, EV production, and isolation methods, studies from preclinical models that have established a foundation of knowledge to support translation into the patient setting, and potential barriers to overcome on the path to clinical application.

63 citations


Journal ArticleDOI
TL;DR: The most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neuralstem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools are summarized.
Abstract: Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.

62 citations


Journal ArticleDOI
TL;DR: In patients with IPF and a rapid pulmonary function decline, therapy with high doses of allogeneic MSCs is a safe and promising method to reduce disease progression.
Abstract: Previous phase I studies demonstrated safety and some beneficial effects of mesenchymal stem cells (MSCs) in patients with mild to moderate idiopathic pulmonary fibrosis (IPF). The aim of our study was to evaluate the safety, tolerability, and efficacy of a high cumulative dose of bone marrow MSCs in patients with rapid progressive course of severe to moderate IPF. Twenty patients with forced ventilation capacity (FVC) ≥40% and diffusing capacity of the lung for carbon monoxide (DLCO) ≥20% with a decline of both >10% over the previous 12 months were randomized into two groups: one group received two intravenous doses of allogeneic MSCs (2 × 108 cells) every 3 months, and the second group received a placebo. A total amount of 1.6 × 109 MSCs had been administered to each patient after the study completion. There were no significant adverse effects after administration of MSCs in any patients. In the group of MSC therapy, we observed significantly better improvement for the 6-minute walk distance in 13 weeks, for DLCO in 26 weeks, and for FVC in 39 weeks compared with placebo. FVC for 12 months in the MSCs therapy group increased by 7.8% from baseline, whereas it declined by 5.9% in the placebo group. We did not find differences between the groups in mortality (two patients died in each group) or any changes in the high-resolution computed tomography fibrosis score. In patients with IPF and a rapid pulmonary function decline, therapy with high doses of allogeneic MSCs is a safe and promising method to reduce disease progression.

61 citations


Journal ArticleDOI
TL;DR: The mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials—including for COVID‐19— of MSCT for these diseases, are reviewed.
Abstract: The broad immunomodulatory properties of human mesenchymal stem cells (MSCs) has allowed for wide application in regenerative medicine as well as immune/inflammatory diseases, including unmatched allogeneic use. The novel coronavirus disease COVID-19 has unleashed a pandemic in record time accompanied by an alarming mortality rate mainly due to pulmonary injury and acute respiratory distress syndrome. Since there are no effective preventive or curative therapies currently, MSC therapy (MSCT) has emerged as a possible candidate despite the lack of preclinical data of MSCs for COVID-19. Interestingly, MSCT preclinical data specifically on immune/inflammatory disorders of the lungs were among the earliest to be reported in 2003, with the first clinical use of MSCT for graft-vs-host disease reported in 2004. Since these first reports, preclinical data showing beneficial effects of MSC immunomodulation have accumulated substantially, and as a consequence, over a third of MSCT clinical trials now target immune/inflammatory diseases. There is much preclinical evidence for MSCT in noninfectious-including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis-as well as infectious bacterial immune/inflammatory lung disorders, with data generally demonstrating therapeutic effects; however, for infectious viral pulmonary conditions, the preclinical evidence is more scarce with some inconsistent outcomes. In this article, we review the mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials-including for COVID-19-of MSCT for these diseases, with some perspectives and comment on MSCT for COVID-19.

Journal ArticleDOI
TL;DR: Recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery are presented, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis.
Abstract: Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue-engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas). Major challenges to fully exploit VEGF potency for therapy include the need to precisely control in vivo distribution of growth factor dose and duration of expression. In fact, the therapeutic window of VEGF delivery depends on its amount in the microenvironment around each producing cell rather than on the total dose, since VEGF remains tightly bound to extracellular matrix (ECM). On the other hand, short-term expression of less than about 4 weeks leads to unstable vessels, which promptly regress following cessation of the angiogenic stimulus. Here, we will briefly overview some key aspects of the biology of VEGF and angiogenesis and discuss their therapeutic implications with a particular focus on approaches using gene therapy, genetically modified progenitors, and ECM engineering with recombinant factors. Lastly, we will present recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis.

Journal ArticleDOI
TL;DR: How current single‐cell RNA sequencing studies have increased knowledge of the cellular and molecular composition of human lung alveoli is discussed, including the identification of molecular heterogeneity, cellular diversity, and previously unknown cell types, some of which arise specifically during disease.
Abstract: Diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia injure the gas-exchanging alveoli of the human lung. Animal studies have indicated that dysregulation of alveolar cells, including alveolar type II stem/progenitor cells, is implicated in disease pathogenesis. Due to mouse-human differences, there has been a desperate need to develop human-relevant lung models that can more closely recapitulate the human lung during homeostasis, injury repair, and disease. Here we discuss how current single-cell RNA sequencing studies have increased knowledge of the cellular and molecular composition of human lung alveoli, including the identification of molecular heterogeneity, cellular diversity, and previously unknown cell types, some of which arise specifically during disease. For functional analysis of alveolar cells, in vitro human alveolar organoids established from human pluripotent stem cells, embryonic progenitors, and adult tissue from both healthy and diseased lungs have modeled aspects of the cellular and molecular features of alveolar epithelium. Drawbacks of such systems are highlighted, along with possible solutions. Organoid-on-a-chip and ex vivo systems including precision-cut lung slices can complement organoid studies by providing further cellular and structural complexity of lung tissues, and have been shown to be invaluable models of human lung disease, while the production of acellular and synthetic scaffolds hold promise in lung transplant efforts. Further improvements to such systems will increase understanding of the underlying biology of human alveolar stem/progenitor cells, and could lead to future therapeutic or pharmacological intervention in patients suffering from end-stage lung diseases.

Journal ArticleDOI
TL;DR: It is demonstrated that osteocytes subjected to fluid shear secrete a distinct collection of factors that significantly enhance hMSC recruitment and osteogenesis and the key role of extracellular vesicles (EVs) in driving these effects.
Abstract: Bone formation or regeneration requires the recruitment, proliferation, and osteogenic differentiation of stem/stromal progenitor cells. A potent stimulus driving this process is mechanical loading. Osteocytes are mechanosensitive cells that play fundamental roles in coordinating loading-induced bone formation via the secretion of paracrine factors. However, the exact mechanisms by which osteocytes relay mechanical signals to these progenitor cells are poorly understood. Therefore, this study aimed to demonstrate the potency of the mechanically stimulated osteocyte secretome in driving human bone marrow stem/stromal cell (hMSC) recruitment and differentiation, and characterize the secretome to identify potential factors regulating stem cell behavior and bone mechanobiology. We demonstrate that osteocytes subjected to fluid shear secrete a distinct collection of factors that significantly enhance hMSC recruitment and osteogenesis and demonstrate the key role of extracellular vesicles (EVs) in driving these effects. This demonstrates the pro-osteogenic potential of osteocyte-derived mechanically activated extracellular vesicles, which have great potential as a cell-free therapy to enhance bone regeneration and repair in diseases such as osteoporosis.

Journal ArticleDOI
TL;DR: This review explores the specific sources of cellular cytotoxicity and genotoxicity inherent to the photo‐crosslinking reaction, the methods to analyze cell death, cell metabolism, and DNA damage within the bioscaffolds, and the possible strategies to overcome these detrimental effects.
Abstract: Three-dimensional biofabrication using photo-crosslinkable hydrogel bioscaffolds has the potential to revolutionize the need for transplants and implants in joints, with articular cartilage being an early target tissue. However, to successfully translate these approaches to clinical practice, several barriers must be overcome. In particular, the photo-crosslinking process may impact on cell viability and DNA integrity, and consequently on chondrogenic differentiation. In this review, we primarily explore the specific sources of cellular cytotoxicity and genotoxicity inherent to the photo-crosslinking reaction, the methods to analyze cell death, cell metabolism, and DNA damage within the bioscaffolds, and the possible strategies to overcome these detrimental effects.

Journal ArticleDOI
TL;DR: In this review, the rationale and possible outcomes of compassionate use of MSCs, particularly in patients with SARS‐CoV‐2 infections, toward proving or disproving the efficacy of this approach in the near future are documented.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID-19) pandemic has become a global health crisis with an extremely rapid progress resulting in thousands of patients who may develop acute respiratory distress syndrome (ARDS) requiring intensive care unit (ICU) treatment. So far, no specific antiviral therapeutic agent has been demonstrated to be effective for COVID-19; therefore, the clinical management is largely supportive and depends on the patients' immune response leading to a cytokine storm followed by lung edema, dysfunction of air exchange, and ARDS, which could lead to multiorgan failure and death. Given that human mesenchymal stem cells (MSCs) from various tissue sources have revealed successful clinical outcomes in many immunocompromised disorders by inhibiting the overactivation of the immune system and promoting endogenous repair by improving the microenvironment, there is a growing demand for MSC infusions in patients with COVID-19-related ARDS in the ICU. In this review, we have documented the rationale and possible outcomes of compassionate use of MSCs, particularly in patients with SARS-CoV-2 infections, toward proving or disproving the efficacy of this approach in the near future. Many centers have registered and approved, and some already started, single-case or phase I/II trials primarily aiming to rescue their critical patients when no other therapeutic approach responds. On the other hand, it is also very important to mention that there is a good deal of concern about clinics offering unproven stem cell treatments for COVID-19. The reviewers and oversight bodies will be looking for a balanced but critical appraisal of current trials.

Journal ArticleDOI
TL;DR: The various applications of ultrasound to MSC‐based therapies, including low‐intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles are reviewed.
Abstract: Mesenchymal stromal cells (MSCs) have been a popular platform for cell-based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano-transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self-renewal and differentiation, and to tissues-of-interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC-based therapies, including low-intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC-based approaches in regenerative medicine.

Journal ArticleDOI
TL;DR: The data support the use of MSC infusions as treatment for steroid‐refractory cGvHD with durable responses, and propose CXCL9 and CxCL10 as early biomarkers for responsiveness to MSC treatment.
Abstract: Steroid-refractory chronic graft-vs-host disease (cGvHD) contributes to morbidity after allogeneic hematopoietic stem cell transplantation. Here, we report on 11 patients with severe, refractory cGvHD treated with repeated infusions of allogeneic bone marrow-derived mesenchymal stromal cells (MSC) over a 6- to 12-month period. Six patients responded to MSC treatment following National Institutes of Health response criteria, accompanied by improvement in GvHD-related symptoms and quality of life. This response was durable, with systemic immunosuppressive therapy withdrawn from two responders, and a further two free from steroids and tapering calcineurin inhibitors. All responders displayed a distinct immune phenotype characterized by higher levels of naive T cells and B cells before treatment compared with the nonresponders, and a significantly higher fraction of CD31+ naive CD4+ T cells. MSC treatment was associated with significant increases in naive T cells, B cells, and Tregs 7 days after each infusion. Skin biopsies showed resolution of epidermal pathology. CXCL9 and CXCL10 showed differential responses in responder and nonresponder patients. Our data support the use of MSC infusions as treatment for steroid-refractory cGvHD with durable responses. We propose CXCL9 and CXCL10 as early biomarkers for responsiveness to MSC treatment. Our results highlight the importance of the MSC recipient immune phenotype in promoting treatment response. This trial was registered at www.ClinicalTrials.gov as #NCT01522716.

Journal ArticleDOI
TL;DR: The main conclusion was that autologous ASCs for the treatment of cryptoglandular perianal fistula is safe and can favor long‐term and sustained fistula healing.
Abstract: The aim of this clinical trial (ID Number {"type":"clinical-trial","attrs":{"text":"NCT01803347","term_id":"NCT01803347"}}NCT01803347) was to determine the safety and efficacy of autologous adipose‐derived stem cells (ASCs) for treatment of cryptoglandular fistula. This research was conducted following an analysis of the mistakes of a same previous phase III clinical trial. We designed a multicenter, randomized, single‐blind clinical trial, recruiting 57 patients. Forty‐four patients were categorized as belonging to the intent‐to‐treat group. Of these, 23 patients received 100 million ASCs plus intralesional fibrin glue (group A) and 21 received intralesional fibrin glue (group B), both after a deeper curettage of tracks and closure of internal openings. Fistula healing was defined as complete re‐epithelialization of external openings. Those patients in whom the fistula had not healed after 16 weeks were eligible for retreatment. Patients were evaluated at 1, 4, 16, 36, and 52 weeks and 2 years after treatment. Results were assessed by an evaluator blinded to the type of treatment. After 16 weeks, the healing rate was 30.4% in group A and 42.8% in group B, rising to 55.0% and 63.1%, respectively, at 52 weeks. At the end of the study (2 years after treatment), the healing rate remained at 50.0% in group A and had reduced to 26.3% in group B. The safety of the cellular treatment was confirmed and no impact on fecal continence was detected. The main conclusion was that autologous ASCs for the treatment of cryptoglandular perianal fistula is safe and can favor long‐term and sustained fistula healing.

Journal ArticleDOI
TL;DR: iPSC derived from AMD patients yielded RPE with a transcriptome that is distinct from that of age‐matched controls, and when challenged with an AMD‐like modification of Bruch's membrane, AMD‐derived iPSC‐RPE activated the complement immune system.
Abstract: Modeling age-related macular degeneration (AMD) is challenging, because it is a multifactorial disease. To focus on interactions between the retinal pigment epithelium (RPE) and Bruch's membrane, we generated RPE from AMD patients and used an altered extracellular matrix (ECM) that models aged Bruch's membrane. Induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from AMD patients or age-matched (normal) controls. RPE derived from iPSCs were analyzed by morphology, marker expression, transepithelial electrical resistance (TER), and phagocytosis of rod photoreceptor outer segments. Cell attachment and viability was tested on nitrite-modified ECM, a typical modification of aged Bruch's membrane. DNA microarrays with hierarchical clustering and analysis of mitochondrial function were used to elucidate possible mechanisms for the observed phenotypes. Differentiated RPE displayed cell-specific morphology and markers. The TER and phagocytic capacity were similar among iPSC-derived RPE cultures. However, distinct clusters were found for the transcriptomes of AMD and control iPSC-derived RPE. AMD-derived iPSC-RPE downregulated genes responsible for metabolic-related pathways and cell attachment. AMD-derived iPSC-RPE exhibited reduced mitochondrial respiration and ability to attach and survive on nitrite-modified ECM. Cells that did attach induced the expression of complement genes. Despite reprogramming, iPSC derived from AMD patients yielded RPE with a transcriptome that is distinct from that of age-matched controls. When challenged with an AMD-like modification of Bruch's membrane, AMD-derived iPSC-RPE activated the complement immune system.

Journal ArticleDOI
TL;DR: Histological analysis demonstrated that these treatments promote the formation of a mature epidermis and dermis with similar composition to healthy skin, and positive skin regenerative outcomes using amnion hydrogel and amnions powder treatments in a large animal model further demonstrate their potential translational value for human wound treatments.
Abstract: There is a need for effective wound treatments that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying living biological products. Previously, we developed an amnion membrane-derived hydrogel and evaluated its wound healing properties using a mouse wound model. In this study, we used a full thickness porcine skin wound model to evaluate the wound-healing efficacy of the amnion hydrogel and a less-processed amnion product comprising a lyophilized amnion membrane powder. These products were compared with commercially available amnion and nonamnion wound healing products. We found that the amnion hydrogel and amnion powder treatments demonstrated significant and rapid wound healing, driven primarily by new epithelialization versus closure by contraction. Histological analysis demonstrated that these treatments promote the formation of a mature epidermis and dermis with similar composition to healthy skin. The positive skin regenerative outcomes using amnion hydrogel and amnion powder treatments in a large animal model further demonstrate their potential translational value for human wound treatments.

Journal ArticleDOI
TL;DR: A review of the results of 31 studies published on simple limbal epithelial transplantation (SLET), a novel transplantation technique that combines the benefits of CLAU and CLET and avoids the challenges associated with both, finds success so far using SLET is comparable with CLAU.
Abstract: Damage to limbal stem cells as a result of injury or disease can lead to limbal stem cell deficiency (LSCD). This disease is characterized by decreased vision that is often painful and may progress to blindness. Clinical features include inflammation, neovascularization, and persistent cornea epithelial defects. Successful strategies for treatment involve transplantation of grafts harvested from the limbus of the alternate healthy eye, called conjunctival-limbal autograft (CLAU) and transplantation of limbal cell sheets cultured from limbal biopsies, termed cultured limbal epithelial transplantation (CLET). In 2012, Sangwan and colleagues presented simple limbal epithelial transplantation (SLET), a novel transplantation technique that combines the benefits of CLAU and CLET and avoids the challenges associated with both. In SLET a small biopsy from the limbus of the healthy eye is divided and distributed over human amniotic membrane, which is placed on the affected cornea. Outgrowth occurs from each small explant and a complete corneal epithelium is typically formed within 2 weeks. Advantages of SLET include reduced risk of iatrogenic LSCD occurring in the healthy cornea at harvest; direct transfer circumventing the need for cell culture; and the opportunity to perform biopsy harvest and transplantation in one operation. Success so far using SLET is comparable with CLAU and CLET. Of note, 336 of 404 (83%) operations using SLET resulted in restoration of the corneal epithelium, whereas visual acuity improved in 258 of the 373 (69%) reported cases. This review summarizes the results of 31 studies published on SLET since 2012. Progress, advantages, challenges, and suggestions for future studies are presented.

Journal ArticleDOI
TL;DR: This review focuses on platforms to study r‐ and s‐μg as well as the impact of μg on cancer stem cells in the field of gastrointestinal cancer, lung cancer, and osteosarcoma, and the current knowledge of different types of stem cells exposed to μg conditions is reviewed.
Abstract: A spaceflight has enormous influence on the health of space voyagers due to the combined effects of microgravity and cosmic radiation. Known effects of microgravity (μg) on cells are changes in differentiation and growth. Considering the commercialization of spaceflight, future space exploration, and long-term manned flights, research focusing on differentiation and growth of stem cells and cancer cells exposed to real (r-) and simulated (s-) μg is of high interest for regenerative medicine and cancer research. In this review, we focus on platforms to study r- and s-μg as well as the impact of μg on cancer stem cells in the field of gastrointestinal cancer, lung cancer, and osteosarcoma. Moreover, we review the current knowledge of different types of stem cells exposed to μg conditions with regard to differentiation and engineering of cartilage, bone, vasculature, heart, skin, and liver constructs.

Journal ArticleDOI
TL;DR: Experimental data indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in “in vitro” experiments with hASCs.
Abstract: Tissue engineering-based bone graft is an emerging viable treatment modality to repair and regenerate tissues damaged as a result of diseases or injuries. The structure and composition of scaffolds should modulate the classical osteogenic pathways in human stem cells. The osteoinductivity properties of the hydroxylapatite-collagen hybrid scaffold named Coll/Pro Osteon 200 were investigated in an in vitro model of human adipose mesenchymal stem cells (hASCs), whereas the clinical evaluation was carried out in maxillofacial patients. Differentially expressed genes (DEGs) induced by the scaffold were analyzed using the Osteogenesis RT2 PCR Array. The osteoinductivity potential of the scaffold was also investigated by studying the alkaline phosphatase (ALP) activity, matrix mineralization, osteocalcin (OCN), and CLEC3B expression protein. Fifty patients who underwent zygomatic augmentation and bimaxillary osteotomy were evaluated clinically, radiologically, and histologically during a 3-year follow-up. Among DEGs, osteogenesis-related genes, including BMP1/2, ALP, BGLAP, SP7, RUNX2, SPP1, and EGFR, which play important roles in osteogenesis, were found to be upregulated. The genes to cartilage condensation SOX9, BMPR1B, and osteoclast cells TNFSF11 were detected upregulated at every time point of the investigation. This scaffold has a high osteoinductivity revealed by the matrix mineralization, ALP activity, OCN, and CLEC3B expression proteins. Clinical evaluation evidences that the biomaterial promotes bone regrowth. Histological results of biopsy specimens from patients showed prominent ossification. Experimental data using the Coll/Pro Osteon 200 indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in "in vitro" experiments with hASCs.

Journal ArticleDOI
TL;DR: It appears that systemically administered ASCs have the potential to enhance wound repair distally from their site of entrapment in the lungs whereas locally administered ASCs enhanced wound repair as they became redistributed within the wound bed.
Abstract: There is increasing interest in the use of adipose-derived mesenchymal stromal cells (ASCs) for wound repair. As the fate of administered cells is still poorly defined, we aimed to establish the location, survival, and effect of ASCs when administered either systemically or locally during wound repair under physiological conditions. To determine the behavior of ASCs, a rat model with wounds on the dorsal aspect of the hind paws was used and two treatment modes were assessed: ASCs administered systemically into the tail vein or locally around the wound. ASCs were transduced to express both firefly luciferase (Fluc) and green fluorescent protein to enable tracking by bioluminescence imaging and immunohistological analysis. Systemically administered ASCs were detected in the lungs 3 h after injection with a decrease in luminescent signal at 48 h and signal disappearance from 72 h. No ASCs were detected in the wound. Locally administered ASCs remained strongly detectable for 7 days at the injection site and became distributed within the wound bed as early as 24 h post injection with a significant increase observed at 72 h. Systemically administered ASCs were filtered out in the lungs, whereas ASCs administered locally remained and survived not only at the injection site but were also detected within the wound bed. Both treatments led to enhanced wound closure. It appears that systemically administered ASCs have the potential to enhance wound repair distally from their site of entrapment in the lungs whereas locally administered ASCs enhanced wound repair as they became redistributed within the wound bed.

Journal ArticleDOI
TL;DR: The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss.
Abstract: The demand for an efficient therapy for alopecia disease has fueled the hair research field in recent decades. However, despite significant improvements in the knowledge of key processes of hair follicle biology such as genesis and cycling, translation into hair follicle replacement therapies has not occurred. Great expectation has been recently put on hair follicle bioengineering, which is based on the development of fully functional hair follicles with cycling activity from an expanded population of hair-inductive (trichogenic) cells. Most bioengineering approaches focus on in vitro reconstruction of folliculogenesis by manipulating key regulatory molecular/physical features of hair follicle growth/cycling in vivo. Despite their great potential, no cell-based product is clinically available for hair regeneration therapy to date. This is mainly due to demanding issues that still hinder the functionality of cultured human hair cells. The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss. The hurdles of these strategies are discussed, as well as the future directions to overcome the obstacles and fulfill the promise of a "hairy" feat.

Journal ArticleDOI
TL;DR: Strategic development for de novo HSC generation includes further investigations of HSC ontogeny, and elucidation of critical signaling pathways, epigenetic modulations, HSC and iPSC microenvironment, and cell‐cell interactions that contribute to stem cell biology and function.
Abstract: The generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) is an active and promising area of research; however, generating engraftable HSCs remains a major obstacle. ex vivo HSC derivation from renewable sources such as iPSCs offers an experimental tool for studying developmental hematopoiesis, disease modeling, and drug discovery, and yields tremendous therapeutic potential for malignant and nonmalignant hematological disorders. Although initial attempts mostly recapitulated yolk sac primitive/definitive hematopoiesis with inability to engraft, recent advances suggest the feasibility of engraftable HSC derivation from iPSCs utilizing ectopic transcription factor expression. Strategic development for de novo HSC generation includes further investigations of HSC ontogeny, and elucidation of critical signaling pathways, epigenetic modulations, HSC and iPSC microenvironment, and cell-cell interactions that contribute to stem cell biology and function.

Journal ArticleDOI
TL;DR: It is demonstrated that hAMSCs markedly reduce pulmonary B‐cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates, which may hamper the self‐maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs.
Abstract: Growing evidence suggests a mechanistic link between inflammation and the development and progression of fibrotic processes. Mesenchymal stromal cells derived from the human amniotic membrane (hAMSCs), which display marked immunomodulatory properties, have been shown to reduce bleomycin-induced lung fibrosis in mice, possibly by creating a microenvironment able to limit the evolution of chronic inflammation to fibrosis. However, the ability of hAMSCs to modulate immune cells involved in bleomycin-induced pulmonary inflammation has yet to be elucidated. Herein, we conducted a longitudinal study of the effects of hAMSCs on alveolar and lung immune cell populations upon bleomycin challenge. Immune cells collected through bronchoalveolar lavage were examined by flow cytometry, and lung tissues were used to study gene expression of markers associated with different immune cell types. We observed that hAMSCs increased lung expression of T regulatory cell marker Foxp3, increased macrophage polarization toward an anti-inflammatory phenotype (M2), and reduced the antigen-presentation potential of macrophages and dendritic cells. For the first time, we demonstrate that hAMSCs markedly reduce pulmonary B-cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates. Thus, hAMSCs may hamper the self-maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs. By modulating B-cell response, hAMSCs may contribute to blunting of the chronicization of lung inflammatory processes with a consequent reduction of the progression of the fibrotic lesion.

Journal ArticleDOI
TL;DR: The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Abstract: Neural crest (NC) cells are a multipotent stem cell population that gives rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Pre‐migratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a post‐migratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in‐vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.

Journal ArticleDOI
TL;DR: It is proposed that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.
Abstract: Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. In the following chapters of this review, we present modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.