scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Neuroscience in 1988"


Journal ArticleDOI
TL;DR: By the end of the first week in culture, hippocampal neurons have established a single axon and several dendrites, which is a stereotyped sequence of developmental events that lead to the establishment of this characteristic form.
Abstract: By the end of the first week in culture, hippocampal neurons have established a single axon and several dendrites. These 2 classes of processes differ in their morphology, in their molecular composition, and in their synaptic polarity (Bartlett and Banker, 1984a, b; Caceres et al., 1984). We examined the events during the first week in culture that lead to the establishment of this characteristic form. Hippocampal cells were obtained from 18 d fetal rats, plated onto polylysine-treated coverslips, and maintained in a serum-free medium. The development of individual cells was followed by sequential photography at daily intervals until both axons and dendrites had been established; identification of the processes was confirmed by immunostaining for MAP2, a dendritic marker. Time-lapse video recording was used to follow the early stages of process formation. Hippocampal neurons acquired their characteristic form by a stereotyped sequence of developmental events. The cells first established several, apparently identical, short processes. After several hours, one of the short processes began to grow very rapidly; it became the axon. The remaining processes began to elongate a few days later and grew at a much slower rate. They became the cell's dendrites. Neurons that arose following mitosis in culture underwent this same sequence of developmental events. In a few instances, 2 processes from a cell exhibited the rapid growth typical of axons, but only one maintained this growth; the other retracted and became a dendrite. Axons branched primarily by the formation of collaterals, not by bifurcation of growth cones. As judged by light microscopy, processes are not specified as axons or dendrites when they arise. The first manifestation of neuronal polarity is the acquisition of axonal characteristics by one of the initial processes; subsequently the remaining processes become dendrites.

1,813 citations


Journal ArticleDOI
TL;DR: The results indicate that neural activity in MT contributes selectively to the perception of motion.
Abstract: Physiological experiments indicate that the middle temporal visual area (MT) of primates plays a prominent role in the cortical analysis of visual motion. We investigated the role of MT in visual perception by examining the effect of chemical lesions of MT on psychophysical thresholds. We trained rhesus monkeys on psychophysical tasks that enabled us to assess their sensitivity to motion and to contrast. For motion psychophysics, we employed a dynamic random dot display that permitted us to vary the intensity of a motion signal in the midst of masking motion noise. We measured the threshold intensity for which the monkey could successfully complete a direction discrimination. In the contrast task, we measured the threshold contrast for which the monkeys could successfully discriminate the orientation of stationary gratings. Injections of ibotenic acid into MT caused striking elevations in motion thresholds, but had little or no effect on contrast thresholds. The results indicate that neural activity in MT contributes selectively to the perception of motion.

1,605 citations


Journal ArticleDOI
TL;DR: Electrolytic and ibotenic acid lesions of the LH demonstrate that neurons in the LH are involved in the autonomic, but not the behavioral, conditioned response pathway, whereas neurons inThe caudal CG are involvedIn the behavioral and autonomic pathway, although different efferent projections of the central amygdala thus appear to mediate the behavioraland autonomic concomitants of conditioned fear.
Abstract: The purpose of the present study was to determine whether lesions of areas projected to by the central amygdaloid nucleus (ACE) would disrupt the classical conditioning of autonomic and/or behavioral emotional responses. The areas studied included 3 projection targets of the ACE: the lateral hypothalamic area (LH), midbrain central gray (CG) region, and bed nucleus of the stria terminalis (BNST). Lesions were made either electrolytically or by microinjection of ibotenic acid, which destroys local neurons without interrupting fibers of passage. Two weeks later, the animals were classically conditioned by pairing an acoustic stimulus with footshock. The next day, conditioned changes in autonomic activity (increases in arterial pressure) and emotional behavior ("freezing," or the arrest of somatomotor activity) evoked by the acoustic conditioned stimulus (CS) were measured during extinction trials. Electrolytic and ibotenic acid lesions of the LH interfered with the conditioned arterial pressure response, but did not affect conditioned freezing. Electrolytic lesions of the rostral CG disrupted conditioned freezing but not conditioned changes in arterial pressure. Ibotenic acid injected into the rostral CG reduced neither the arterial pressure nor the freezing response. Injection of ibotenic acid in the caudal CG, like electrolytic lesions of the rostral CG, disrupted the freezing, but not the arterial pressure response. Injection of ibotenic acid into the BNST had no effect on either response. These data demonstrate that neurons in the LH are involved in the autonomic, but not the behavioral, conditioned response pathway, whereas neurons in the caudal CG are involved in the behavioral, but not the autonomic, pathway. Different efferent projections of the central amygdala thus appear to mediate the behavioral and autonomic concomitants of conditioned fear.

1,540 citations


Journal ArticleDOI
TL;DR: An antiserum against purified cholinergic synaptic vesicles from Torpedo and expression screening was used to isolate a cDNA clone encoding synuclein, a 143 amino acid neuron-specific protein that is expressed only in nervous system tissue.
Abstract: We used an antiserum against purified cholinergic synaptic vesicles from Torpedo and expression screening to isolate a cDNA clone encoding synuclein, a 143 amino acid neuron-specific protein. A cDNA clone was also isolated from a rat brain cDNA library that encodes a highly homologous 140 amino acid protein. The amino terminal 100 amino acids of both proteins are comprised of an 11 amino acid repeating unit that contains a conserved core of 6 residues. The synuclein gene is expressed only in nervous system tissue, not in electric organ, muscle, liver, spleen, heart, or kidney. In the electric organ synapse Torpedo synuclein-immunoreactive proteins are found in 3 major molecular-weight classes of 17.5, 18.5, and 20.0 kDa. In the neuronal cell soma the 17.5 kDa species is predominant and immunoreactivity is localized to a portion of the nuclear envelope.

1,442 citations


Journal ArticleDOI
TL;DR: The present study suggests that glutamate neurotoxicity may be predominantly mediated by the activation of the NMDA subclass of glutamate receptors--occurring both directly, during exposure to exogenous compound, and indirectly, due to the subsequent release of endogenous NMDA agonists.
Abstract: The antagonist pharmacology of glutamate neurotoxicity was quantitatively examined in murine cortical cell cultures. Addition of 1- 3 mM DL-2-amino-5-phosphonovalerate (APV), or its active isomer D-APV, acutely to the exposure solution selectively blocked the neuroexcitation and neuronal cell selectively blocked the neuroexcitation and neuronal cell loss produced by N-methyl-D-aspartate (NMDA), with relatively little effect on that produced by either kainate or quisqualate. As expected, this selective NMDA receptor blockade only partially reduced the neuroexcitation or acute neuronal swelling produced by the broad-spectrum agonist glutamate; surprisingly, however, this blockade was sufficient to reduce glutamate- induced neuronal cell loss markedly. Lower concentrations of APV or D- APV had much less protective effect, suggesting that the blockade of a large number of NMDA receptors was required to acutely antagonize glutamate neurotoxicity. This requirement may be caused by the amplification of small amounts of acute glutamate-induced injury by subsequent release of endogenous NMDA agonists from injured neurons, as the “late” addition of 10–1000 microM APV or D-APV (after termination of glutamate exposure) also reduced resultant neuronal damage. If APV or D-APV were present both during and after glutamate exposure, a summation dose-protection relationship was obtained, showing substantial protective efficacy at low micromolar antagonist concentrations. Screening of several other excitatory amino acid antagonists confirmed that the ability to antagonize glutamate neurotoxicity might correlate with ability to block NMDA-induced neuroexcitation: The reported NMDA antagonists ketamine and DL-2-amino- 7-phosphono-heptanoate, as well as the broad-spectrum antagonist kynurenate, were all found to attenuate glutamate neurotoxicity substantially; whereas gamma-D-glutamylaminomethyl sulfonate and L- glutamate diethyl ester, compounds reported to block predominantly quisqualate or kainate receptors, did not affect glutamate neurotoxicity. The present study suggests that glutamate neurotoxicity may be predominantly mediated by the activation of the NMDA subclass of glutamate receptors--occurring both directly, during exposure to exogenous compound, and indirectly, due to the subsequent release of endogenous NMDA agonists. Given other studies linking NMDA receptors to channels with unusually high calcium permeability, this suggestion is consistent with previous data showing that glutamate neurotoxicity depends heavily on extracellular calcium.

990 citations


Journal ArticleDOI
TL;DR: It is suggested that the NB system may serve as a structural basis for the concept of the generalized ascending activation of Moruzzi and Magoun (1949) by directly activating the neocortex and by suppressing the rhythm generation in the RT-thalamocortical circuitry.
Abstract: EEG and single-unit techniques have been used to study the EEG correlates of cellular firing in the neocortex, n. reticularis (RT) and “specific” thalamic nuclei, and the cholinergic forebrain area (nucleus basalis, NB). Neuronal firing was related to the ongoing behavior of the rat. In addition, using a 16-channel neocortical recording/mapping system, we studied the effects of ibotenic acid lesion of NB, RT, and other thalamic nuclei on the patterns and spatial distribution of neocortical electrical activity. The majority of neurons in neocortex, NB, and RT increased their firing rates during walking, as compared to during immobility, with concurrent decrease of delta power in the neocortical EEG. During immobility, high-voltage spindles (HVS; greater than 1 mV) were occasionally recorded from the neocortex. Depth profiles of HVS and slow delta waves were different in the neocortex. Neocortical cells decreased their discharge frequency during the positive portion of delta waves recorded in layers V and VI. All cells in the neocortex and specific thalamic nuclei fired rhythmically and phase-locked to the spike component of HVS. RT neurons showed an opposite phase relationship and fired mainly during the wave component of HVS. Half of the NB neurons also showed phasic modulation with HVS. Circumscribed lesion of RT and extensive damage of other thalamic regions, including the intralaminar nuclei, suppressed HVS but had no effect on the neocortical EEG correlates of behavior. In sharp contrast, damage to the NB resulted in a dramatic increase of slow delta waves on the side of the lesion, mimicking the effect of scopolamine administration. We suggest that the NB plays a key role in neocortical arousal by directly activating the neocortex and by suppressing the rhythm generation in the RT-thalamocortical circuitry. We further suggest that the NB system may serve as a structural basis for the concept of the generalized ascending activation of Moruzzi and Magoun (1949).

984 citations


Journal ArticleDOI
TL;DR: A code by which a population of motor cortical neurons could determine uniquely the direction of reaching movements in three- dimensional space is described.
Abstract: We describe a code by which a population of motor cortical neurons could determine uniquely the direction of reaching movements in three- dimensional space. The population consisted of 475 directionally tuned cells whose functional properties are described in the preceding paper (Schwartz et al., 1988). Each cell discharged at the highest rate with movements in its “preferred direction” and at progressively lower rates with movements in directions away from the preferred one. The neuronal population code assumes that for a particular movement direction each cell makes a vectorial contribution (“votes”) with direction in the cell9s preferred direction and magnitude proportional to the change in the cell9s discharge rate associated with the particular direction of movement. The vector sum of these contributions is the outcome of the population code (the “neuronal population vector”) and points in the direction of movement in space well before the movement begins.

923 citations


Journal ArticleDOI
TL;DR: Common efferent projections of the dorsolateral prefrontal cortex and posterior parietal cortex were examined in 3 rhesus monkeys by placing injections of tritiated amino acids and HRP in frontal and parietal cortices, respectively, of the same hemisphere.
Abstract: Common efferent projections of the dorsolateral prefrontal cortex and posterior parietal cortex were examined in 3 rhesus monkeys by placing injections of tritiated amino acids and HRP in frontal and parietal cortices, respectively, of the same hemisphere. Terminal labeling originating from both frontal and parietal injection sites was found to be in apposition in 15 ipsilateral cortical areas: the supplementary motor cortex, the dorsal premotor cortex, the ventral premotor cortex, the anterior arcuate cortex (including the frontal eye fields), the orbitofrontal cortex, the anterior and posterior cingulate cortices, the frontoparietal operculum, the insular cortex, the medial parietal cortex, the superior temporal cortex, the parahippocampal gyrus, the presubiculum, the caudomedial lobule, and the medial prestriate cortex. Convergent terminal labeling was observed in the contralateral hemisphere as well, most prominently in the principal sulcal cortex, the superior arcuate cortex, and the superior temporal cortex. In certain common target areas, as for example the cingulate cortices, frontal and parietal efferents terminate in an array of interdigitating columns, an arrangement much like that observed for callosal and associational projections to the principal sulcus (Goldman-Rakic and Schwartz, 1982). In other areas, frontal and parietal terminals exhibit a laminar complementarity: in the depths of the superior temporal sulcus, prefrontal terminals are densely distributed within laminae I, III, and V, whereas parietal terminals occupy mainly laminae IV and VI directly below the prefrontal bands. Subcortical structures also receive apposing or overlapping projections from both prefrontal and parietal cortices. The dorsolateral prefrontal and posterior parietal cortices project to adjacent, longitudinal domains of the neostriatum, as has been described previously (Selemon and Goldman-Rakic, 1985); these projections are also found in close apposition in the claustrum, the amygdala, the caudomedial lobule, and throughout the anterior medial, medial dorsal, lateral dorsal, and medial pulvinar nuclei of the thalamus. In the brain stem, both areas of association cortex project to the intermediate layers of the superior colliculus and to the midline reticular formation of the pons.(ABSTRACT TRUNCATED AT 400 WORDS)

841 citations


Journal ArticleDOI
TL;DR: This paper showed that differentiated oligodendrocytes (O4+, A2B5+, GalC+) represented a nonpermissive substrate for neuronal adhesion and neurite growth.
Abstract: To study the interaction of neurons with CNS glial cells, dissociated sympathetic or sensory ganglion cells or fetal retinal cells were plated onto cultures of dissociated optic nerve glial cells of young rats. Whereas astrocytes favored neuron adhesion and neurite outgrowth, oligodendrocytes differed markedly in their properties as neuronal substrates. Immature (O4+, A2B5+, GalC-) oligodendrocytes were frequently contacted by neurons and neurites. In contrast, differentiated oligodendrocytes (O4+, A2B5-, GalC+) represented a nonpermissive substrate for neuronal adhesion and neurite growth. When neuroblastoma cells or 3T3 fibroblasts were plated into optic nerve glial cultures, the same differences were observed; differentiated oligodendrocytes were nonpermissive for cell adhesion, neurite growth, or fibroblast spreading. These nonpermissive oligodendrocytes were characterized by a radial, highly branched process network, often contained myelin basic protein, and may, therefore, correspond to cells actively involved in the production of myelin-like membranes. Isolated myelin from adult rat spinal cord was adsorbed to polylysine-coated culture dishes and tested as a substrate for peripheral neurons, neuroblastoma cells, or 3T3 cells. Again, cell attachment, neurite outgrowth, and fibroblast spreading was strongly impaired. General physicochemical properties of myelin were not responsible for this effect, since myelin from rat sciatic nerves favored neuron adhesion and neurite growth as well as spreading of 3T3 cells. These results show that differentiated oligodendrocytes express nonpermissive substrate properties, which may be of importance in CNS development or regeneration.

684 citations


Journal ArticleDOI
TL;DR: In both V3 and V4, the representation of the central visual field is magnified relative to that of the periphery; however, at a given eccentricity, the receptive fields of V4 are larger than those of V3.
Abstract: The representation of the visual field in areas V3 and V4 of the macaque was mapped with multiunit electrodes. Twelve Macaca fascicularis were studied in repeated recording sessions while immobilized and anesthetized. V3 is a narrow strip (4-5 mm wide) of myeloarchitectonically distinct cortex located immediately anterior to V2. It contains a systematic representation of the central 35-40 degrees of the contralateral visual field; the representation of the upper quadrant is located ventrally in the hemisphere and that of the lower quadrant, dorsally. There is a small gap between the dorsal (V3d) and ventral (V3v) portions of V3. The representation of the horizontal meridian is adjacent to that in V2 and forms the posterior border of both V3d and V3v. Most or all of the anterior border of V3d consists of the representation of the lower vertical meridian. The entire anterior border of V3v consists of the representation of the upper vertical meridian. V4 is a strip of myeloarchitectonically distinct cortex 5-8 mm wide, immediately anterior to V3. It contains a coarse, but systematic, representation of approximately the central 35-40 degrees of the contralateral visual field. The representation of the upper visual field is located ventrally in the hemisphere. Most of the representation of the lower visual field is located dorsally. The posterior border of V4 corresponds to the representation of the vertical meridian, and the representation of the horizontal meridian is located at or near its anterior border. In both V3 and V4, the representation of the central visual field is magnified relative to that of the periphery. In both areas, the size of receptive fields increases with increasing eccentricity; however, at a given eccentricity, the receptive fields of V4 are larger than those of V3.

676 citations


Journal ArticleDOI
TL;DR: It is found that adult rat dorsal root ganglion sensory neurons are not dependent on NGF or other survival factors for long-term maintenance in vitro, and both NGF and brain-derived neurotrophic factor (BDNF) were found to stimulate the regeneration of axons from adult DRG neurons.
Abstract: Largely on the basis of studies with nerve growth factor (NGF), it is now widely accepted that development of the peripheral nervous system of vertebrates is dependent in part on the interaction of immature sensory and autonomic neurons with specific survival factors that are derived from peripheral target fields. I have found, in marked contrast to an absolute requirement for NGF during development, that adult rat dorsal root ganglion sensory neurons are not dependent on NGF or other survival factors for long-term (3-4 weeks) maintenance in vitro. When dissociated and enriched, at least 70-80% of adult DRG neurons survived and extended long processes either in the absence of exogenously added NGF or upon the removal of any possible source of endogenous NGF or other neurotrophic activity (i.e., nonneuronal cells, in chemically defined culture medium, in the presence of an excess of anti-NGF antibodies, or when cultured as single neurons in microwells). Although not required for survival or expression of a range of complex morphologies, both NGF and brain-derived neurotrophic factor (BDNF) were found to stimulate the regeneration of axons from adult DRG neurons.

Journal ArticleDOI
TL;DR: A set of procedures for patterning the outgrowth of cells cultured on 2-dimensional substrates showed that glia are patterned along with the associated granule cells, and Interestingly, the GFAP-positive glia that proliferated on surfaces bound with amine derivatives attained primarily a tile-shaped, fibroblast-like morphology, while those proliferating on glass coated with poly(D-lysine) developed primarily a spindle- shaped, process-bearing morphology.
Abstract: The cytoarchitecture of nervous tissue is lost during the dissociation procedures used to form primary cell cultures. As a first step toward reestablishing an ordered arrangement of these cells in vitro, we developed a set of procedures for patterning the outgrowth of cells cultured on 2-dimensional substrates. These procedures used a combination of surface chemistry and photolithographic techniques. The adhesive properties of either silicon or silicon dioxide (quartz) surfaces were controlled by covalently binding small organic molecules to the surface with silane coupling agents. The attachment and growth of either embryonic mouse spinal cells or perinatal rat cerebellar cells were found to be promoted by binding certain amine derivatives to the surface. In particular, cells grown on surfaces bound with diamines and triamines, but not with monoamines, formed cultures whose morphology was similar to that of cells cultured on conventional substrates, i.e., glass coated with poly(D-lysine). The attachment of cells to a substrate was inhibited by binding alkane chains (e.g., n- tetradecane) to the surface and plating the cells in media containing 5– 10% (vol/vol) serum. Patterns of selected adhesivity were formed using photochemical resist materials and lithographic masking techniques compatible with the silane chemistry. Cultures of either spinal cord cells or cerebellar cells could be confined to square regions on the scale of 50 micron. Cerebellar cells could be confined to grow on lines with widths less than 10 micron. This width is comparable to the diameter of granule cell somata. The patterned growth of cerebellar cells was maintained up to 12 d in vitro. Over this time period the granule cells were observed to develop electrical excitability and immunoreactivity for neuron-specific enolase. Purkinje neurons also developed electrical excitability when grown on the chemically modified surfaces. Immunochemical reactivity of the patterned cultures for glial fibrillary acid protein (GFAP) showed that glia are patterned along with the associated granule cells. Interestingly, the GFAP-positive glia that proliferated on surfaces bound with amine derivatives attained primarily a tile-shaped, fibroblast-like morphology, while those proliferating on glass coated with poly(D-lysine) developed primarily a spindle-shaped, process-bearing morphology. Granule cells preferentially associated with the spindle-shaped glia.

Journal ArticleDOI
TL;DR: The motor cortex is a nodal point in the construction of patterns of output signals specifying the direction of arm movement in extrapersonal space, which generalize to 3-D space previous results obtained in 2- D space.
Abstract: We describe the relations between the neuronal activity in primate motor cortex and the direction of arm movement in three-dimensional (3-D) space. The electrical signs of discharge of 568 cells were recorded while monkeys made movements of equal amplitude from the same starting position to 8 visual targets in a reaction time task. The layout of the targets in 3-D space was such that the direction of the movement ranged over the whole 3-D directional continuum in approximately equal angular intervals. We found that the discharge rate of 475/568 (83.6%) cells varied in an orderly fashion with the direction of movement: discharge rate was highest with movements in a certain direction (the cell's "preferred direction") and decreased progressively with movements in other directions, as a function of the cosine of the angle formed by the direction of the movement and the cell's preferred direction. The preferred directions of different cells were distributed throughout 3-D space. These findings generalize to 3-D space previous results obtained in 2-D space (Georgopoulos et al., 1982) and suggest that the motor cortex is a nodal point in the construction of patterns of output signals specifying the direction of arm movement in extrapersonal space.

Journal ArticleDOI
TL;DR: By applying immunohistochemistry, fluorescence-activated cell sorting, and 3H-thymidine auto-radiography to dissociated rat CNS cells, it is shown that the monoclonal antibody Rat 401 recognizes a cell population with proliferative, temporal, and quantitative features expected of neuronal precursors.
Abstract: Important features of adult neuronal number, location, and type are a consequence of early embryonic events that occur before neurons have differentiated. We have measured cell number during embryogenesis of the rat CNS. Markers that are expressed in the proliferating neuronal precursor are required to study the mechanisms controlling their proliferation and differentiation. By applying immunohistochemistry, fluorescence-activated cell sorting, and 3H-thymidine auto-radiography to dissociated rat CNS cells, we show that the monoclonal antibody Rat 401 recognizes a cell population with proliferative, temporal, and quantitative features expected of neuronal precursors.

Journal ArticleDOI
Dana Giulian1, J Woodward1, DG Young1, Joseph F. Krebs1, LB Lachman1 
TL;DR: Recombinant forms of IL-1 injected into the cerebral cortex of adult rats elicit not only astrogliosis but also new blood vessel growth, which suggest thatIL-1-secreting inflammatory cells may mediate wound healing in the CNS.
Abstract: Interleukin-1 (IL-1), a protein produced by mononuclear phagocytes, helps to initiate the inflammatory response through its action upon a diverse population of cells. Recently this immunomodulator has been detected at sites of traumatized brain. As reported here, recombinant forms of IL-1 injected into the cerebral cortex of adult rats elicit not only astrogliosis but also new blood vessel growth. These responses are typical of brain injury and suggest that IL-1-secreting inflammatory cells may mediate wound healing in the CNS.

Journal ArticleDOI
TL;DR: The changes in NGFRI staining seen in this study suggest that NGF may have broader effects during development than previously thought.
Abstract: Nerve growth factor (NGF) receptor expression was studied in rats between embryonic day 11 (E11) to postnatal day 10 (PND10) by using a monoclonal antibody, 192-IgG, that specifically recognizes rat NGF receptor. Sympathetic ganglia were lightly stained by 192-IgG for NGF receptor immunoreactivity (NGFRI) (E11-PND10). Neural crest-derived sensory ganglia were moderately to densely stained (E11-PND10). Areas in CNS innervated by the central processes of these ganglia were also stained. Parasympathetic ciliary ganglion showed some detectable staining (E16-PND6). Placode-derived sensory ganglia were stained more densely than that of neural crest-derived sensory ganglia. The most densely stained tissue for NGFRI was found in all peripheral nerves. Basal forebrain cholinergic neurons were NGFRI positive from E15 throughout the period examined. Motoneurons in both spinal cord and brain stem were positive for NGFRI between E15 and PND10. NGFRI staining was seen in a variety of sensory pathways and related structures, such as olfactory tract and glomerular layer of olfactory bulb; retina, optic nerve and tract, lateral geniculate nucleus, medial terminal nucleus of the accessory optic tract, and olivary pretectal nucleus; ventral cochlear nucleus and to a lesser degree in dorsal cochlear nucleus, superior olive, and nucleus of lateral lemniscus; solitary tract; cuneate nucleus, gracile nucleus, and ventroposterior thalamic nucleus. The specific staining was also found in some other CNS structures, including brain-stem reticular formation; amygdala; medial nucleus of inferior olive but not the rest of inferior olive, external granule cell layer and Purkinje's cells of cerebellum, and deep cerebellar nuclei. Some non-neuronal tissues such as meninges and dental tissue showed very distinctive staining. Limb buds and somites were NGFRI positive starting at E11, and the staining on muscle tissue became very dense at E15-E18 and largely disappeared around PND10. Embryonic thymus was positive for NGFRI. The adventitia surrounding blood vessels was very densely stained. The changes in NGFRI staining seen in this study suggest that NGF may have broader effects during development than previously thought.

Journal ArticleDOI
TL;DR: The cytochrome oxidase-rich patches or blobs of the monkey striate cortex have been shown to contain cells that have unoriented receptive fields, many of which are color selective, and the functional organization of color opponency in the blob regions of the parafoveal representation of the visual cortex was studied.
Abstract: The cytochrome oxidase-rich patches or blobs of the monkey striate cortex have been shown to contain cells that have unoriented receptive fields, many of which are color selective. We studied the functional organization of color opponency in the blob regions of the parafoveal representation of the visual cortex. We also examined the patterns of connectivity among blob and nonblob cells by multiple electrode penetrations and cross-correlation analysis. Some of the color- selective cells in the blobs exhibited receptive fields that were similar to those found in the parvocellular layers of the lateral geniculate nucleus (LGN): one type exhibited center-surround spatial and chromatic opponency corresponding to the Type I cell found in the LGN; another had center-only chromatic opponency, corresponding to the Type II cell of the LGN. A blob color-selective cell with no LGN counterpart had center color opponency with a nonchromatically opponent surround antagonism. We termed this cell the “modified Type II” cell. Contrary to previous reports, few true double color-opponent cells were found. Some blob cells previously characterized as double opponent probably belong to our modified Type II category and, unlike true double opponent cells, do not respond well to isoluminant color boundaries. Occasional color-selective oriented cells were either intermixed or in close proximity to blob cells. Neighboring electrode penetrations within the same blob yielded cells of the same color opponency, either red versus green or blue versus yellow, suggesting that individual blobs are dedicated to processing one color opponency. Blobs dedicated to red/green color opponency were 3 times more numerous than blue/yellow blobs. Furthermore, the cells in layer 4C lying beneath blobs of a given color opponency had identical color opponency to the overlying cells in blobs. Cross-correlation analysis of pairs of nonblob, oriented cells in the superficial layers showed interactions between cells with matched orientation and eye preference, at varying horizontal separations. Such interactions are consistent with anatomically demonstrated clustered horizontal connections. Positive cross-correlograms were found between blob cells in the same and in adjacent blobs when the cells9 receptive field type, color opponency, and ocular dominance matched. Correlograms also indicated monosynaptic connections from Type II to modified Type II cells of the same color opponency, suggesting that Type II cells may contribute to the construction of the modified Type II fields in the cortex.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: In the central half of V1, the cortical magnification was found to be greater along the vertical than along the horizontal meridian, and overall magnification factors appeared to be scaled proportionate to brain size across different species.
Abstract: Macaque monkeys were shown retinotopically-specific visual stimuli during 14C-2-deoxy-d-glucose (DG) infusion in a study of the retinotopic organization of primary visual cortex (V1). In the central half of V1, the cortical magnification was found to be greater along the vertical than along the horizontal meridian, and overall magnification factors appeared to be scaled proportionate to brain size across different species. The cortical magnification factor (CMF) was found to reach a maximum of about 15 mm/deg at the representation of the fovea, at a point of acute curvature in the V1-V2 border. We find neither a duplication nor an overrepresentation of the vertical meridian. The magnification factor did not appear to be doubled in a direction perpendicular to the ocular dominance strips; it may not be increased at all. The DG borders in parvorecipient layer 4Cb were found to be as sharp as 140 micron (half-amplitude, half width), corresponding to a visual angle of less than 2' of arc at the eccentricity measured. In other layers (including magnorecipient layer 4Ca), the retinotopic borders are broader. The retinotopic spread of activity is greater when produced by a low-spatial-frequency grating than when produced by a high-spatial-frequency grating. Orientation-specific stimuli produced a pattern of activation that spread further than 1 mm across cortex in some layers. Some DG evidence suggests that the spread of functional activity is greater near the foveal representation than near 5 degrees eccentricity.

Journal ArticleDOI
TL;DR: It is proposed that the induced NGF receptors function to bind NGF molecules upon the Schwann cell surface and thereby provide a substratum laden with trophic support and chemotactic guidance for regenerating sensory and sympathetic neurons.
Abstract: Axotomy of sciatic nerve fibers in adult rats induces expression of NGF receptor in the entire population of Schwann cells located distal to the injury (Taniuchi et al., 1986b). In the present study we have used immunocytochemistry, with a monoclonal antibody directed against the rat NGF receptor, to examine axotomized peripheral nerves by light and electron microscopy. We have found that (1) the NGF receptor molecules were localized to the cell surface of Schwann cells forming bands of Bungner; (2) axonal regeneration into the distal portion of sciatic nerve coincided temporally and spatially with a decrease in Schwann cell expression of NGF receptor; (3) Schwann cell NGF receptor could be induced by axotomy of NGF-independent neurons, such as motoneurons and parasympathetic neurons; and (4) the presence of axon-Schwann cell contact was inversely related to expression of Schwann cell NGF receptor. Using biochemical assays we have found that, in striking contrast to peripheral nerves, there was no detectable induction of NGF receptor in the spinal cord and brain after axotomy of NGF receptor-bearing fibers. Filtration assays of 125I-NGF binding to the induced NGF receptors of Schwann cells measured a Kd of 1.5 nM and a fast dissociation rate, both characteristics of class II receptor sites. We conclude that Wallerian degeneration induces Schwann cells, but not central neuroglia, to produce and position upon their plasmalemmal surface the class II NGF receptor molecules. The induction is ubiquitous among Schwann cells, irrespective of the type of axon they originally ensheathed. Expression of Schwann cell NGF receptor is negatively regulated by axonal contact, being induced when axons degenerate and suppressed when regenerating axons grow out along the Schwann cell surface. We propose that the induced NGF receptors function to bind NGF molecules upon the Schwann cell surface and thereby provide a substratum laden with trophic support and chemotactic guidance for regenerating sensory and sympathetic neurons.

Journal ArticleDOI
TL;DR: The DG results suggest that color sensitivity is also high in the lower-layer (layers 5 + 6) blobs, and that many layer 5 receptive fields are double-opponent, which supports the idea of a color-insensitive stream running from the magnocellular LGN layers through striate layers 4Ca and 4B to extrastriate areas MT and V3.
Abstract: Using spatially diffuse stimuli (or sinusoidal gratings of very low spatial frequency), levels of 14C-2-deoxy-d-glucose (DG) uptake produced by color-varying stimuli are much greater than those produced by luminance-varying stimuli in macaque striate cortex. Such a difference in DG results is consistent with previous psychophysical and electrophysiological results from man and monkey. In DG experiments with color-varying gratings of low and middle spatial frequencies, or with spatially diffuse color variations, DG uptake was highest in the cytochrome oxidase blobs, as was also seen with low-spatial-frequency luminance gratings. High-spatial-frequency, color-varying uptake patterns were shifted to cover both blob and interblob regions in a manner similar to that of the patterns obtained with middle-spatial-frequency luminance stimuli. However, in no instance did chromatic gratings produce uptake restricted to the interblob regions, as with the pattern seen with the highest-spatial-frequency luminance gratings. Thus, DG uptake is relatively higher in the interblob regions when comparing luminance with color-varying gratings that are otherwise similar. It was also possible to show DG evidence for receptive-field double-opponency in the upper-layer blobs, but color sensitivity in layer 4Cb appears single-opponent. The DG results suggest that color sensitivity is also high in the lower-layer (layers 5 + 6) blobs, and that many layer 5 receptive fields are double-opponent. Striate layers 4Ca and 4B-appeared color-insensitive in a wide variety of DG tests; this supports the idea of a color-insensitive stream running from the magnocellular LGN layers through striate layers 4Ca and 4B to extrastriate areas MT and V3. There was also a major effect due to wavelength: long and short wavelengths produced much more uptake than did middle wavelengths, even when all colors were equated for luminance and saturation. No variation with eccentricity was seen in cortical color sensitivity, at least between 0 degrees and 10 degrees.

Journal ArticleDOI
TL;DR: In this paper, the authors carried out a quantitative study of capsaicin-induced fluxes of sodium, guanidine, calcium, rubidium, and chloride ions in cultures of neonatal and adult rat DRG neurons.
Abstract: Capsaicin is a pungent pain-producing compound found in plants of the capsicum family; it exerts excitatory, desensitizing, and toxic effects on a subset of sensory neurons, including the polymodal nociceptor population. We have carried out a quantitative study of capsaicin- induced fluxes of sodium, guanidine, calcium, rubidium, and chloride ions in cultures of neonatal and adult rat DRG neurons, in conjunction with the use of a histochemical stain that identifies capsaicin- sensitive neurons by means of cobalt uptake. Those cells that take up cobalt in a capsaicin-dependent manner (EC50 = 0.2 microM) represent about 50% of the total neuronal population derived from neonatal DRGs on short-term culture. Overnight treatment of cultures with 2 microM capsaicin leads to the loss of the cobalt-staining subpopulation. The capsaicin-insensitive neurons contain immunoreactive neurofilament epitopes that are present in fewer than 10% of capsaicin-sensitive neurons. This observation provides indirect evidence that the sensitive cells correspond to the small, dark B-type neurons, which are negative for neurofilament immunoreactivity in vivo. A capsaicin-dependent calcium uptake (EC50 = 0.2 microM), as measured by 45Ca incorporation, is shown by a DRG neuronal subpopulation that, like the cobalt-staining population of DRG neurons, is lost after overnight capsaicin treatment (2 microM). Capsaicin application leads to the accumulation of millimolar levels of calcium within a few minutes. Cadmium and other divalent cations block capsaicin-induced calcium uptake, but little or no inhibition is seen with organic calcium channel antagonists. Mitochondria, rather than the endoplasmic reticulum, are the probable destination of the internalized calcium, because ruthenium red inhibits calcium uptake (IC50 = 0.05 microM), whereas methylxanthines are inactive. The subset of sensory neurons that takes up calcium also releases 86Rb when exposed to capsaicin (EC50 = 0.06 microM). No efflux of 36Cl ions could be induced by capsaicin. These cells also show a capsaicin-induced uptake of 22Na or 14C guanidine (EC50 = 0.06 microM). In contrast, chick DRG cells in culture showed no capsaicin-induced calcium or cobalt uptake. Primary cultures of rat superior cervical ganglion neurons and Schwann cells, and a number of neuronal cell lines, also failed to respond to capsaicin, as judged by the calcium, cobalt, or guanidine uptake assays.

Journal ArticleDOI
TL;DR: The results establish that MDA and MDMA produce structural damage to 5-HT axon terminals followed by lasting denervation of the forebrain, and the selective degeneration of 5- HT axons indicates that these drugs may serve as experimental tools to analyze the organization and function of5-HT projections.
Abstract: The psychotropic amphetamine derivatives 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) have been used for recreational and therapeutic purposes in man. In rats, these drugs cause large reductions in brain levels of serotonin (5-HT). This study employs immunocytochemistry to characterize the neurotoxic effects of these compounds upon monoaminergic neurons in the rat brain. Two weeks after systemic administration of MDA or MDMA (20 mg/kg, s.c., twice daily for 4 d), there is profound loss of serotonergic (5-HT) axons throughout the forebrain; catecholamine axons are completely spared. Regional differences in drug toxicity are exemplified by partial sparing of 5-HT axons in hippocampus, lateral hypothalamus, basal forebrain, and in some areas of neocortex. The terminals of 5-HT axons are selectively ablated, while axons of passage and raphe cell bodies are spared. Thickened preterminal fibers exhibit increased staining due to damming-up of neurotransmitter and other axonal constituents. Fine 5- HT axon terminals are extremely vulnerable to these drugs, whereas terminal-like axons with large varicosities survive, raising the possibility that some 5-HT axons may be resistant to the neurotoxic effects. At short survivals, visualization of greatly swollen, fragmented 5-HT axons provides anatomic evidence for degeneration of 5- HT projections. The results establish that MDA and MDMA produce structural damage to 5-HT axon terminals followed by lasting denervation of the forebrain. Both drugs have similar effects, but MDA produces a greater reduction of 5-HT axons than does MDMA at the same dosage. The selective degeneration of 5-HT axons indicates that these drugs may serve as experimental tools to analyze the organization and function of 5-HT projections. Caution should be exercised until further studies determine whether these compounds may be hazardous in man.

Journal ArticleDOI
TL;DR: It appears that bFGF and aFGF are potent trophic factors for many populations of CNS neurons and could potentially play a significant role in nervous system development.
Abstract: Basic fibroblast growth factor (bFGF) supports the survival of neurons from many regions of the E18 fetal rat brain. Survival was significantly increased for neurons derived from the hippocampus, entorhinal cortex (EC), frontal cortex, parietal cortex (PC), occipital cortex, striatum, septum, and thalamus, but not from the subiculum (Sb). The proportion of neurons rescued by bFGF varied among brain regions, suggesting the existence of subpopulations of responsive neurons. Like hippocampal neurons, neurons from the EC and PC required about 1 pM bFGF (10–20 pg/ml) for half-maximal response; striatal neurons, in contrast, required about 3 pM bFGF. Neurite outgrowth after 24 hr exposure was significantly increased for neurons from the hippocampus, EC, and PC, while striatal neurons had only a marginal response. Although bFGF stimulated some astrocytic proliferation in the cultures, glial contamination was maintained at 2% or less. Acidic FGF (aFGF) supported smaller numbers of neurons from each region, although it significantly increased survival of neurons from hippocampus, EC, PC, striatum, and Sb. The concentration required for half-maximal survival was around 100–300 pM (2–5 ng/ml). It appears that bFGF and aFGF are potent trophic factors for many populations of CNS neurons and could potentially play a significant role in nervous system development.

Journal ArticleDOI
TL;DR: Results indicate that activation of glutamate receptors leads to the opening of voltage-dependent calcium channels; the resulting increases in calcium influx lead to the observed alterations in dendritic outgrowth and neuronal survival.
Abstract: The present study examined the effects of glutamate on the outgrowth of dendrites and axons in isolated hippocampal pyramidal-like neurons in cell culture During the first day of culture the survival and outgrowth of these neurons was unaffected by high concentrations (up to 1 nM) of glutamate, quisqualic acid (QA), kainic acid (KA), and N- methyl-D-aspartic acid Beginning on day 2 of culture high levels of glutamate, KA and QA were toxic to the majority of pyramidal neurons, while subtoxic levels of these agents caused a well-defined, dose- dependent, sequence of effects on dendritic outgrowth At increasing concentrations of glutamate, QA, and KA, the following events were observed: (1) dendritic outgrowth rates were reduced, while axonal elongation rates were unaffected; (2) dendritic length was reduced, while axons continued to grow; (3) dendrites regressed dramatically, and axonal outgrowth rate was reduced These dendrite-specific effects of glutamate were apparently mediated at the growth cones since focal application of glutamate to individual dendritic growth cones resulted in suppression of growth cone activity and a regression of the dendrite; axons were unaffected by focal glutamate application Pharmacological tests using glutamate receptor agonists and antagonists demonstrated that receptors of the KA/QA type mediated the glutamate effects on outgrowth and survival The calcium channel blocker Co2+ prevented both glutamate neurotoxicity and glutamate-induced dendritic regression Ionophore A23187 and elevations in extracellular K+ levels each caused a dose-dependent series of outgrowth and survival responses similar to those caused by glutamate Taken together, these results indicate that activation of glutamate receptors leads to the opening of voltage-dependent calcium channels; the resulting increases in calcium influx lead to the observed alterations in dendritic outgrowth and neuronal survival

Journal ArticleDOI
TL;DR: The results indicate that the hemispheric global/local asymmetry is due to a perceptual mechanism with a critical anatomical locus centered in the STG.
Abstract: When stimuli with larger forms (global) containing smaller forms (local) are presented to subjects with large lesions in the right hemisphere, they are more likely to miss the global form than the local form, whereas subjects with large lesions in the left are more likely to miss the local than the global form. The present study tested whether the global/local impairment in subjects with posterior lesions was due to deficits in controlled attentional processes, passive perceptual processes, or both. Attentional control was examined by measuring reaction time changes when the probability of a target appearing at either the global or local level was varied. Patients with unilateral right or left lesions centered in temporal-parietal regions and age-matched controls served as subjects. Because neurophysiological and neuropsychological evidence have implicated temporal regions in visual discrimination and inferior parietal regions in the allocation of attention to locations in the visual field, patients with left hemisphere lesions were further subdivided into those with lesions centered in the superior temporal gyrus (LSTG) or rostral inferior parietal lobule (LIPL). Patients with right hemisphere injury could not be analogously subdivided. The results revealed that the LSTG group was able to control the allocation of attention to global and local levels normally, while the LIPL group was not. In contrast, the LSTG group showed a strong baseline reaction time advantage toward global targets, while normals and the LIPL group showed no advantage toward one level or the other. Finally, the perceptual component was affected differentially by lesions in the right hemisphere and LSTG, with lesions in the left favoring global targets and lesions in the right favoring local targets. These findings indicate that the hemispheric global/local asymmetry is due to a perceptual mechanism with a critical anatomical locus centered in the STG.

Journal ArticleDOI
TL;DR: In situ hybridization histochemistry indicated a prevalence of m1 mRNA in the pyramidal cell layer of the hippocampus, the granule cell layer in the dentate gyrus, the olfactory bulb, amygdala, ofactory tubercule, and piriform cortex, while m3 and m4 mRNA predominated in the caudate putamen and cerebral cortex.
Abstract: A family of 4 rat muscarinic receptors (m1, m2, m3, and m4) have recently been cloned and sequenced (Bonner et al., 1987). Since pharmacological probes that are presently available do not appear to distinguish among 3 of these muscarinic receptors, we constructed oligonucleotide probes corresponding to the N-terminal sequences of the muscarinic receptors and used them to specifically localize m1, m2, m3, and m4 mRNA in sections of rat brain using in situ hybridization histochemistry. Northern analysis demonstrated a 3.1 kilobase (kb) m 1 mRNA, a 4.5 kb m3 mRNA, and a 3.3 kb m4 mRNA in cerebral cortex, striatum, hippocampus, and cerebellum. In situ hybridization histochemistry indicated a prevalence of m1 mRNA in the pyramidal cell layer of the hippocampus, the granule cell layer of the dentate gyrus, the olfactory bulb, amygdala, olfactory tubercule, and piriform cortex. Caudate putamen and cerebral cortex showed moderate levels of labeling. m2 mRNA was detectable in the medial septum, diagonal band, olfactory bulb, and pontine nuclei. m3 and m4 mRNA were also prevalent in the olfactory bulb and pyramidal cell layer of the hippocampus but were present only in low levels in the dentate gyrus. m3 mRNA was present in superficial and deep layers of the cerebral cortex, whereas m4 mRNA was more evenly distributed with a slightly more intense labeling evident in the midcortical layer. In addition, m3 mRNA was present in a number of thalamic nuclei and brain-stem nuclei, while m4 mRNA predominated in the caudate putamen. These data offer a new basis on which to interpret the heterogeneity of muscarinic actions in the CNS.

Journal ArticleDOI
Dana Giulian1, DG Young1, J Woodward1, DC Brown1, LB Lachman1 
TL;DR: In vitro studies indicate that ameboid microglia, a class of brain mononuclear phagocytes, are the likely source of IL-1, which is found to be an astroglial growth factor during development of the mammalian brain.
Abstract: The immunomodulator interleukin-1 (IL-1) is found to be an astroglial growth factor during development of the mammalian brain. In vitro studies indicate that ameboid microglia, a class of brain mononuclear phagocytes, are the likely source of IL-1. Examination of different brain regions during development shows IL-1 production only after the appearance of ameboid microglia. These observations suggest that brain mononuclear phagocytes secrete growth factors that regulate normal growth and development of the CNS.

Journal ArticleDOI
TL;DR: Results confirm that in the adult rat retina, neuronal death is a major effect of axotomy near the cell soma, and show that extrinsic influences introduced by the apposition of a PN segment at the time of severing the ON can rescue a substantial number of these neurons.
Abstract: To investigate the role of extrinsic influences on the survival and growth of axotomized retinal ganglion cells (RGCs) in the mature mammalian CNS, both optic nerves (ONs) of adult rats were transected intraorbitally and, on one side, replaced by an autologous segment of peripheral nerve (PN) that had been left unconnected distally. The survival of RGCs and the regrowth of their cut axons into the PN grafts were assessed using morphometric techniques, neuroanatomic tracers, and immunologic cell markers to identify and count RGCs at times ranging from 15 d to 9 months. It was observed that (1) in the absence of a PN graft, more than 90% of the RGCs died by 1 month after axotomy; (2) between 1 and 3 months after axotomy, survival of RGCs in the PN-grafted retinas was enhanced 2-4-fold; (3) nearly 20% of the surviving RGCs regrew lengthy axons into the grafts; and (4) although the density of surviving RGCs in PN-grafted retinas decreased significantly between 1 and 3 months after axotomy, the densities of RGCs with axons extending into the graft remained relatively stable. These results confirm that in the adult rat retina, neuronal death is a major effect of axotomy near the cell soma. Although such lesions lead to the degeneration of many RGCs, we show that extrinsic influences introduced by the apposition of a PN segment at the time of severing the ON can rescue a substantial number of these neurons. Because the enhanced survival of many axotomized RGCs in the PN-grafted retinas appears to be limited to the first few weeks after injury, while those of RGCs that regenerate axons into the grafts do not show a parallel decline, it is possible that, in these experiments, neuronal viability depends on a spectrum of differently timed influences that may include the early diffusion of critical molecules arising from the graft and the subsequent establishment of more complex interactions with graft components.

Journal ArticleDOI
TL;DR: The results indicate that cortical visual neurons are binocularly linked to respond to the relative position and contrast of the images over their receptive fields, and also that both these aspects of binocular stimulation may be utilized by the brain as a source of stereoscopic information.
Abstract: The neural signals in visual cortex associated with positional disparity and contrast texture correlation of binocular images are the subject of this study. We have analyzed the effects of stereoscopically presented luminous bars and of dynamic random-dot patterns on the activity of single neurons in cortical visual areas V1, V2, and V3-V3A of the alert, visually trained rhesus macaque. The interpretation of the results and considerations of possible neural mechanisms led us to recognize 2 functional sets of stereoscopic neurons. (1) A set of neurons, tuned excitatory (T0) or tuned inhibitory (TI), which respond sharply to images of zero or near-zero disparity. Objects at or about the horopter drive the T0 neurons and suppress the TI, while objects nearer and farther have the opposite effects on each type, inhibition of the T0 and excitation of the TI. The activity of these neurons may provide, in a reciprocal way, the definition of the plane of fixation, and the basic reference for binocular single vision and depth discrimination. (2) A second set of neurons includes tuned excitatory at larger crossed or uncrossed disparities (TN/TF) and neurons with reciprocal excitatory and inhibitory disparity sensitivity with cross- over at the horopter (NE/FA). Binocularly uncorrelated image contrast drives these neurons to a maintained level of activity, which shifts, in response to correlated images, toward facilitation or suppression as a function of positional disparity. These neurons may operate in the neural processing leading to stereopsis, both coarse and fine, and also provide signals for the system controlling binocular vergence. These results indicate that cortical visual neurons are binocularly linked to respond to the relative position and contrast of the images over their receptive fields, and also that both these aspects of binocular stimulation may be utilized by the brain as a source of stereoscopic information.

Journal ArticleDOI
TL;DR: The results imply that posterior cingulate areas play an essential role in the use of topographical information, probably by transmitting and elaborating information passing between the hippocampal system and neocortical association areas.
Abstract: The contribution of anterior and posterior cingulate cortical areas to spatial learning and memory was examined in 4 experiments using the place-navigation task. Rats with complete bilateral cingulate cortex aspiration or aspiration of posterior cingulate cortex (area 29) alone could not swim directly to a hidden platform located in a fixed place. When animals with these lesions were tested for 40 d in a place- alternation task in which they received 16 daily trials with the platform placed in a new location each day, they did not show reliable improvement in place navigation. The inability to swim to changing locations or to a single location was not overcome by preoperative training in these tasks. Rats with anterior cingulate cortex aspirations showed a less severe impairment in both tasks and, with more training than is necessary for control rats, they acquired near- normal place-navigation accuracy. Rats with complete cingulate cortex aspiration were almost as accurate as control rats in learning to swim to a visible platform. The results imply that posterior cingulate areas play an essential role in the use of topographical information, probably by transmitting and elaborating information passing between the hippocampal system and neocortical association areas.