scispace - formally typeset
Open AccessJournal ArticleDOI

2-Alkyl-5-thienyl-Substituted Benzo[1,2-b:4,5-b′]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells

TLDR
Two novel, symmetrical, and linear A-D-A-type π-conjugated donor molecules each containing a planar electron-rich 2-octylthiene-5-yl-substituted benzodithiophene (TBDT) unit as the core are synthesized and end-capped with electron-deficient cyanoacetate (CNR) or dicyanovinyl (CN) units.
Abstract
In this study, we have strategically designed and convergently synthesized two novel, symmetrical, and linear A–D–A-type π-conjugated donor molecules (TBDTCNR, TBDTCN), each containing a planar electron-rich 2-octylthiene-5-yl-substituted benzodithiophene (TBDT) unit as the core, flanked by octylthiophene units and end-capped with electron-deficient cyanoacetate (CNR) or dicyanovinyl (CN) units. We thoroughly characterized both of these materials and investigated the effects of the end groups (CNR, CN) on their optical, electrochemical, morphological, and photovoltaic properties. We then fabricated solution-processed bulk heterojunction organic solar cells incorporating TBDTCNR and TBDTCN. Among our tested devices, the one containing TBDTCNR and [6,6]-phenyl-C61-butyric acid methyl ester in a 1:0.40 ratio (w/w) exhibited the highest power conversion efficiency (5.42%) with a short-circuit current density (Jsc) of 9.08 mA cm–2, an open circuit voltage (Voc) of 0.90 V, and an impressive fill factor (FF) of ...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

TL;DR: This review offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship.
Journal ArticleDOI

A–D–A small molecules for solution-processed organic photovoltaic cells

TL;DR: A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc.
Journal ArticleDOI

Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells

TL;DR: In this paper, the progress made in the field of small molecules containing BDT units for solution-processed organic photovoltaic cells is reviewed, and insights into several important aspects regarding the design and synthesis of BDT based small molecules are also included.
Journal ArticleDOI

High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing

TL;DR: In this paper, a two-dimensional organic small molecule, DCA3T(T-BDT), was designed and synthesized for solution-processed organic solar cells (OSCs).
Journal ArticleDOI

Development of small-molecule materials for high-performance organic solar cells

TL;DR: In this paper, a mini review of small molecules with impressive photovoltaic performance especially reported in the last two years was highlighted, and the relationship between molecular structure and device performance was analyzed, which drew some rules for rational molecular design.
References
More filters
Journal ArticleDOI

Small molecule semiconductors for high-efficiency organic photovoltaics

TL;DR: This review summarizes the developments in small molecular donors, acceptors, and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs and focuses on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances.
Journal ArticleDOI

Solution-processed small-molecule solar cells with 6.7% efficiency

TL;DR: Efficient solution-processed SM BHJ solar cells based on a new molecular donor, DTS(PTTh(2))(2) are reported and it is demonstrated that solar cells fabricated from small donor molecules can compete with their polymeric counterparts.
Journal ArticleDOI

Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers†

TL;DR: This work designed an 5-alkylthiophene-2-yl-substituted BDT monomer and synthesized two new PBDTTT-based polymers having either the thieno[3,4b], 4,7-dithiophene, 2,1,3-benzothiadiazole, and bithiazole properties, which showed promising photovoltaic properties.
Journal ArticleDOI

Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit.

TL;DR: The better PCEs were achieved by improving the short-circuit current density without sacrificing the high open-circuits voltage and fill factor through the strategy of incorporating the advantages of both conventional small molecules and polymers for OPVs.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions mentioned in the paper "2‐alkyl-5-thienyl-substituted benzo[1,2‐b:4,5‐b′]dithiophene-based donor molecules for solution-processed organic solar cells" ?

In this study, the authors have strategically designed and convergently synthesized two novel, symmetrical, and linear A− D−A-type π-conjugated donor molecules ( TBDTCNR, TBDTCN ), each containing a planar electron-rich 2-octylthiene-5-ylsubstituted benzodithiophene ( TBDT ) unit as the core, flanked by octylthiophene units and end-capped with electron-deficient cyanoacetate ( CNR ) or dicyanovinyl ( CN ) units. The authors thoroughly characterized both of these materials and investigated the effects of the end groups ( CNR, CN ) on their optical, electrochemical, morphological, and photovoltaic properties. The FFs of these solutionprocessed small-molecule organic solar cells ( SMOSCs ) are outstanding when compared with those recently reported for benzodithiophene ( BDT ) -based SMOSCs, because of the high crystallinity and excellent stacking properties of the TBDT-based compounds.