scispace - formally typeset
Journal ArticleDOI

3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage

TLDR
This paper presents a probabilistic analysis of the response of the immune system to natural disasters to the presence of carbon dioxide in the air and shows clear patterns of decline over time.
Abstract
[Wang, Da-Wei; Li, Feng; Liu, Min; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Lu, Gao Qing] Univ Queensland, AIBN, Australia Res Council Ctr Funct Nanomat, Brisbane, Qld 4072, Australia. [Lu, Gao Qing] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

read more

Citations
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

A review of electrode materials for electrochemical supercapacitors

TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Journal ArticleDOI

Carbon-based materials as supercapacitor electrodes

TL;DR: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials forsupercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology.
Journal ArticleDOI

Advanced Materials for Energy Storage

TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Journal ArticleDOI

Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors

TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
References
More filters
Book

Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications

TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Journal ArticleDOI

Principles and applications of electrochemical capacitors

TL;DR: In this article, the fundamental principles, performance, characteristics, present and future applications of electrochemical capacitors are presented in this communication, and different applications demanding large ECs with high voltage and improved energy and power density are under discussion.
Journal ArticleDOI

Carbon materials for the electrochemical storage of energy in capacitors

TL;DR: In this article, different types of capacitors with a pure electrostatic attraction and/or pseudocapacitance effects are presented, and their performance in various electrolytes is studied taking into account the different range of operating voltage (1V for aqueous and 3 V for aprotic solutions).
Journal ArticleDOI

Carbon properties and their role in supercapacitors

TL;DR: Supercapacitors are able to store and deliver energy at relatively high rates (beyond those accessible with batteries) because the mechanism of energy storage is simple charge-separation (as in conventional capacitors) as discussed by the authors.
Journal ArticleDOI

Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer

TL;DR: The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.
Related Papers (5)