scispace - formally typeset
Journal ArticleDOI

A bright future for organic field-effect transistors.

Michele Muccini
- 01 Aug 2006 - 
- Vol. 5, Iss: 8, pp 605-613
Reads0
Chats0
TLDR
Recent advances and future prospects of light-emitting field-effect transistors are explored, with particular emphasis on organic semiconductors and the role played by the material properties, device features and the active layer structure in determining the device performances.
Abstract
Field-effect transistors are emerging as useful device structures for efficient light generation from a variety of materials, including inorganic semiconductors, carbon nanotubes and organic thin films. In particular, organic light-emitting field-effect transistors are a new class of electro-optical devices that could provide a novel architecture to address open questions concerning charge-carrier recombination and light emission in organic materials. These devices have potential applications in optical communication systems, advanced display technology, solid-state lighting and electrically pumped organic lasers. Here, recent advances and future prospects of light-emitting field-effect transistors are explored, with particular emphasis on organic semiconductors and the role played by the material properties, device features and the active layer structure in determining the device performances.

read more

Citations
More filters
Journal ArticleDOI

Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics.

TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Journal ArticleDOI

A high-mobility electron-transporting polymer for printed transistors

TL;DR: A highly soluble and printable n-channel polymer exhibiting unprecedented OTFT characteristics under ambient conditions in combination with Au contacts and various polymeric dielectrics is reported and all-printed polymeric complementary inverters have been demonstrated.
Journal ArticleDOI

π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications†

TL;DR: In this article, a review of π-conjugated polymeric semiconductors for organic thin-film (or field effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.
Journal ArticleDOI

A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells.

TL;DR: An electron-transport polymer with good solution processibility, excellent thermal stability, and high electron affinity based on alternating perylene diimide and dithienothiophene units has been synthesized.
References
More filters
Journal ArticleDOI

The path to ubiquitous and low-cost organic electronic appliances on plastic

TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices

TL;DR: The assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping are reported, and electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.
Journal ArticleDOI

Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes

TL;DR: Optical spectroscopy can be used to rapidly determine the detailed composition of bulk SWNT samples, providing distributions in both tube diameter and chiral angle.
Journal ArticleDOI

Growth of nanowire superlattice structures for nanoscale photonics and electronics.

TL;DR: Single-nanowire photoluminescent, electrical transport and electroluminescence measurements show the unique photonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.
Related Papers (5)