scispace - formally typeset
Journal ArticleDOI

A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties

Reads0
Chats0
TLDR
MOROF-1 shows a reversible and highly selective solvent-induced 'shrinking–breathing' process involving large volume changes that strongly influence the magnetic properties of the material, which could be the first stage of a new route towards magnetic solvent sensors.
Abstract
A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties

read more

Citations
More filters
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Journal ArticleDOI

Engineering Metal Organic Frameworks for Heterogeneous Catalysis

TL;DR: In conclusion, MOFs as Host Matrices or Nanometric Reaction Cavities should not be considered as a source of concern in the determination of MOFs’ properties in relation to other materials.
Journal ArticleDOI

Metal-organic frameworks: a new class of porous materials

TL;DR: A review of the synthesis, structure, and properties of metal-organic frameworks (MOFs) is presented in this paper, highlighting the important advances in their research over the past decade.
Journal ArticleDOI

Soft porous crystals

TL;DR: The concept of the cooperative integration of 'softness' and 'regularity' and the relationship between the structures and properties of these materials in view of their practical applications are discussed.
Journal ArticleDOI

Postsynthetic modification of metal–organic frameworks

TL;DR: The rapid increase in reports on PSM demonstrates this methodology will play an increasingly important role in the development of MOFs for the foreseeable future, and in both scope of chemical reactions and range of suitable MOFs.
References
More filters
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Journal ArticleDOI

A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n

TL;DR: In this paper, a highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield.
Journal ArticleDOI

Open-Framework Inorganic Materials.

TL;DR: Aluminosilicate zeolites such as UTD-1 belong to a family of nanoporous inorganic materials that find utility in catalysis, separation, and ion exchange.
Journal ArticleDOI

Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids†

Abstract: The designed construction of extended porous frameworks from soluble molecular building blocks represents one of the most challenging issues facing synthetic chemistry today. Recently, intense research activities directed toward the development of this field have included the assembly of inorganic metal clusters,1 coordination complexes,2 and organic molecules3 of great diversity into extended motifs that are held together either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen-bonding and π-π interactions. Materials that have been produced in this way are referred to as modular since they are assembled from discrete molecules which can be modified to have well-defined function.4 The fact that the integrity of the building blocks is preserved during the synthesis and ultimately translated into the resulting assembled network offers numerous opportunities for designing frameworks with desirable topologies and architectures, thus paving the way for establishing connections between molecular and solid properties. At least three challenges have emerged in this area that must be reckoned with in order for the ideas of rational and designed synthesis of porous materials to become a reality with routine utility. First, it is difficult to control the orientation and stereochemistry of the building blocks in the solid state in order to achieve a given target molecular topology and architecture. Second, in most cases, the products of such assembly reactions are obtained as poorly crystalline or amorphous solids, thus prohibiting their full characterization by single-crystal X-ray diffraction techniques. Third, access to the pores within open structuressan aspect that is so critical to their utility as porous materialssis often prevented by either selfinterpenetration as observed for very open frameworks or strong host-guest interactions that lead to the destruction of the host framework when removal or exchange of guests is attempted. To define and investigate the parameters contributing to the assembly of materials from molecular building blocks, we have established a program aimed at constructing modular porous networks by linking inorganic metal sulfide clusters and organic molecules with transition metal ions. Our work has focused primarily on studying the issues outlined above, and this Account presents our progress toward finding viable and general solutions to these challenges. This is illustrated by some representative examples chosen from the chemistry developed in our research effort for the three building blocks shown in a-c. Their functionality, shape, size, and
Journal ArticleDOI

Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores

TL;DR: A strategy for the design of highly porous and structurally stable networks makes use of metal-organic building blocks that can be assembled on a triply periodic P-minimal geometric surface to produce structures that are interpenetrating—more accurately considered as interwoven.
Related Papers (5)