scispace - formally typeset
Journal ArticleDOI

A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer.

TLDR
This material showed excellent structural stability due to a pillar layer, corresponding to 85% capacity retention between 3.0 and 4.5 V at 60 °C after 100 cycles, and the amount of heat generation was decreased by 40%, compared to LiNi0.15O2.
Abstract
A solid solution series of lithium nickel metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, and Al) have been investigated intensively to enhance the inherent structural instability of LiNiO2. However, when a voltage range of Ni-based cathode materials was increased up to >4.5 V, phase transitions occurring above 4.3 V resulted in accelerated formation of the trigonal phase (P3m1) and NiO phases, leading to and pulverization of the cathode during cycling at 60 °C. In an attempt to overcome these problems, LiNi0.62Co0.14Mn0.24O2 cathode material with pillar layers in which Ni2+ ions were resided in Li slabs near the surface having a thickness of ∼10 nm was prepared using a polyvinylpyrrolidone (PVP) functionalized Mn precursor coating on Ni0.7Co0.15Mn0.15(OH)2. We confirmed the formation of a pillar layer via various analysis methods (XPS, HRTEM, and STEM). This material showed excellent structural stability due to a pillar layer, corresponding to 85% capacity retention between 3.0 and 4.5 V at 60 °C after 10...

read more

Citations
More filters
Journal ArticleDOI

Facile Fabrication of Ethoxy-Functional Polysiloxane Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode with Improved Cycling Performance for Rechargeable Li-Ion Battery

TL;DR: Electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature, therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.
Journal ArticleDOI

Constructing a Protective Pillaring Layer by Incorporating Gradient Mn4+ to Stabilize the Surface/Interfacial Structure of LiNi0.815Co0.15Al0.035O2 Cathode.

TL;DR: With the stable outer surface provided by the enriched Mn4+ gradient concentration and the pillar effect of the NiO-like phase, Mn-incorporated quaternary cathodes show enhanced structural stability and improved Li+ diffusion as well as lithium-storage properties.
Journal ArticleDOI

Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode.

TL;DR: Formation of a glue-nanofiller layer between grains, consisting of a middle-temperature spinel-like Lix CoO2 phase, reinforces the strength of the incoherent interfacial binding between anisotropically oriented grains by enhancing the face-to-face adhesion strength.
Journal ArticleDOI

High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li+ Diffusion Pathway

TL;DR: The intensity ratio of I(110)/I(108) obtained from X-ray diffraction patterns and high-resolution transmission electronmicroscopy confirm that the particles have enhanced growth of (110), (100), and (010) surface planes, which supply superior inherent Li(+) deintercalation/Intercalation.
Journal ArticleDOI

Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel-Rich Cathode Materials for Lithium-Ion Batteries

TL;DR: The gradient doping can take advantage of the "pillar effect" and restrain the "blocking effect" of the pillar ions, which reduces irreversible capacity loss and improves the cycling and rate performance of the Ni-rich cathode materials.
References
More filters
Journal ArticleDOI

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Journal ArticleDOI

Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries

TL;DR: In this article, the performance of Li, Li-C anodes and Li x MO y cathodes depends on their surface chemistry in solutions, which either contribute to electrode stabilization or to capacity fading due to an increase in the electrodes' impedance.
Journal ArticleDOI

Positive Electrode Materials for Li-Ion and Li-Batteries†

TL;DR: In this article, positive electrodes for Li-ion and lithium batteries have been under intense scrutiny since the advent of the Li ion cell in 1991, and a growing interest in developing Li−sulfur and Li−air batteries that have the potential for vastly increased capacity and energy density, which is needed to power large scale systems.
Journal ArticleDOI

High-energy cathode material for long-life and safe lithium batteries

TL;DR: The results suggest that the cathode material reported on could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles.
Related Papers (5)