scispace - formally typeset
Journal ArticleDOI

A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation

TLDR
The Surface Energy Balance Algorithm for Land (SEBAL) as mentioned in this paper estimates the spatial variation of most essential hydro-meteorological parameters empirically, and requires only field information on short wave atmospheric transmittance, surface temperature and vegetation height.
About
This article is published in Journal of Hydrology.The article was published on 1998-12-01. It has received 2628 citations till now. The article focuses on the topics: SEBAL & Land cover.

read more

Citations
More filters
Journal ArticleDOI

Evapotranspiration estimation considering anthropogenic heat based on remote sensing in urban area

TL;DR: Wang et al. as discussed by the authors estimated water consumption from 2003 to 2012 in Beijing based on water balance method, and found that the annual mean ET in urban area was about 654 mm.
Journal ArticleDOI

Albedo à superfície a partir de imagens Landsat 5 em áreas de cana-de-açúcar e cerrado

TL;DR: In this paper, the albedo data from the land surface sensor using the images of Thematic Mapper (TM) satellite LANDSAT 5 and to compare it with data from two agrometeorological stations located in the region of Cerrado, and another in sugar cane cultivation.
Book ChapterDOI

Distributed estimation of actual evapotranspiration through remote sensing techniques

TL;DR: In this article, a brief introduction to the main remote sensing methods for ET estimate and, by means of ground ET measurements carried out through eddy covariance systems at three different sites in southern Italy, analyzes the performance given by the Surface Energy Balance Algorithm for Land (SEBAL) model using images of the Moderate Resolution Imaging Spectroradiometer (MODIS) on areas characterized by different physiographic and vegetative conditions (sparse vegetation, crop canopy and high mountain vegetation).
Journal ArticleDOI

Analysis of energy fluxes and land surface parameters in a grassland ecosystem: a remote sensing perspective

TL;DR: In this article, a remote sensing-based land surface characterization and flux estimation study was conducted using Landsat data from 1997 to 2003 on two grazing land experimental sites located at the Agricultural Research Services (ARS), Mandan, North Dakota.
References
More filters
Journal ArticleDOI

The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field

TL;DR: In this paper, the stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO $_2$ concentration and when plotted against any one of these variables a scatter diagram results.
Journal ArticleDOI

A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation

TL;DR: In this paper, a revised version of the Simple Biosphere model (SiB2) is presented, incorporating a realistic canopy photosynthesis-conductance model to describe the simultaneous transfer of CO2 and water vapor into and out of the vegetation, respectively.
Journal ArticleDOI

Flux Parameterization over Land Surfaces for Atmospheric Models

TL;DR: In this article, a summary of observations and modeling efforts on surface fluxes, carried out at Cabauw in The Netherlands and during MESOGERS-84 in the south of France, is given.
Journal ArticleDOI

Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation

TL;DR: The use of analytical solutions of the diffusion equation for "footprint prediction" is explored in this paper, where the upwind area most likely to affect a downwind flux measurement at a given height is compared.
Journal ArticleDOI

Wheat canopy temperature: A practical tool for evaluating water requirements

TL;DR: In this paper, the authors used a sliding cubic smoothing technique to calculate daily water contents and thus water depletion rates for the entire growing season and used this to predict water use by wheat in six differentially irrigated plots.
Related Papers (5)