scispace - formally typeset
Journal ArticleDOI

A self-organizing network for hyperellipsoidal clustering (HEC)

Jianchang Mao, +1 more
- Vol. 7, Iss: 1, pp 16-29
Reads0
Chats0
TLDR
Experiments show that the HEC network leads to a significant improvement in the clustering results over the K-means algorithm with Euclidean distance, and indicates that hyperellipsoidal shaped clusters are often encountered in practice.
Abstract
We propose a self-organizing network for hyperellipsoidal clustering (HEC). It consists of two layers. The first employs a number of principal component analysis subnetworks to estimate the hyperellipsoidal shapes of currently formed clusters. The second performs competitive learning using the cluster shape information from the first. The network performs partitional clustering using the proposed regularized Mahalanobis distance, which was designed to deal with the problems in estimating the Mahalanobis distance when the number of patterns in a cluster is less than or not considerably larger than the dimensionality of the feature space during clustering. This distance also achieves a tradeoff between hyperspherical and hyperellipsoidal cluster shapes so as to prevent the HEC network from producing unusually large or small clusters. The significance level of the Kolmogorov-Smirnov test on the distribution of the Mahalanobis distances of patterns in a cluster to the cluster center under the Gaussian cluster assumption is used as a compactness measure. The HEC network has been tested on a number of artificial data sets and real data sets, We also apply the HEC network to texture segmentation problems. Experiments show that the HEC network leads to a significant improvement in the clustering results over the K-means algorithm with Euclidean distance. Our results on real data sets also indicate that hyperellipsoidal shaped clusters are often encountered in practice.

read more

Citations
More filters
Journal ArticleDOI

Data clustering: a review

TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Journal ArticleDOI

Data clustering: 50 years beyond K-means

TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Journal ArticleDOI

Survey of clustering algorithms

TL;DR: Clustering algorithms for data sets appearing in statistics, computer science, and machine learning are surveyed, and their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts are illustrated.
Book ChapterDOI

Data Clustering: 50 Years Beyond K-means

TL;DR: Cluster analysis as mentioned in this paper is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics, which is one of the most fundamental modes of understanding and learning.
Book ChapterDOI

A Survey of Clustering Data Mining Techniques

TL;DR: This survey concentrates on clustering algorithms from a data mining perspective as a data modeling technique that provides for concise summaries of the data.
References
More filters

Some methods for classification and analysis of multivariate observations

TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Book

Pattern Recognition with Fuzzy Objective Function Algorithms

TL;DR: Books, as a source that may involve the facts, opinion, literature, religion, and many others are the great friends to join with, becomes what you need to get.
Book

Numerical Recipes in C: The Art of Scientific Computing

TL;DR: Numerical Recipes: The Art of Scientific Computing as discussed by the authors is a complete text and reference book on scientific computing with over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, with many new topics presented at the same accessible level.
Journal ArticleDOI

Least squares quantization in PCM

TL;DR: In this article, the authors derived necessary conditions for any finite number of quanta and associated quantization intervals of an optimum finite quantization scheme to achieve minimum average quantization noise power.

Least Squares Quantization in PCM

TL;DR: The corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy.