scispace - formally typeset
Journal ArticleDOI

A space-time correlation model for multielement antenna systems in mobile fading channels

TLDR
The utility of the new space-time correlation model is demonstrated by clarifying the limitations of a widely accepted correlation model for MIMO fading channels, and the impact of nonisotropic scattering around the user, on the capacity of a MIMo fading channel is quantified.
Abstract
Analysis and design of multielement antenna systems in mobile fading channels require a model for the space-time cross correlation among the links of the underlying multiple-input multiple-output (MIMO) channel. In this paper, we propose a general space-time cross-correlation function for mobile frequency nonselective Rice fading MIMO channels, in which various parameters of interest such as the angle spreads at the base station and the user, the distance between the base station and the user, mean directions of the signal arrivals, array configurations, and Doppler spread are all taken into account. The new space-time cross-correlation function includes all the relevant parameters of the MIMO fading channel in a clean compact form, suitable for both mathematical analysis and numerical calculations/simulations. It also covers many known correlation models as special cases. We demonstrate the utility of the new space-time correlation model by clarifying the limitations of a widely accepted correlation model for MIMO fading channels. As another application, we quantify the impact of nonisotropic scattering around the user, on the capacity of a MIMO fading channel.

read more

Citations
More filters
Journal ArticleDOI

Capacity limits of MIMO channels

TL;DR: An overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels is provided and it is shown that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the M IMO broadcast channel are intimately related via a duality transformation.
Journal ArticleDOI

A review of antennas and propagation for MIMO wireless communications

TL;DR: This paper reviews recent research findings concerning antennas and propagation in MIMO systems and considers issues considered include channel capacity computation, channel measurement and modeling approaches, and the impact of antenna element properties and array configuration on system performance.
Journal ArticleDOI

On the capacity of spatially correlated MIMO Rayleigh-fading channels

TL;DR: A concise closed-form expression is derived for the characteristic function (c.f.) of MIMO system capacity with arbitrary correlation among the transmitting antennas or among the receiving antennas in frequency-flat Rayleigh-fading environments, and an exact expression for the mean value of the capacity for arbitrary correlation matrices is derived.
Journal ArticleDOI

An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels

TL;DR: This model is the first GBSM that has the ability to study the impact of the vehicular traffic density on channel characteristics and close agreement is achieved between the theoretical results and measured data, demonstrating the utility of the proposed model.
Journal ArticleDOI

Models for MIMO propagation channels : a review

TL;DR: This paper reviews recently published results on multiple input multiple output (MIMO) channel modeling and distinguishes between two main approach approaches.
References
More filters
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.

A table of integrals

TL;DR: Basic Forms x n dx = 1 n + 1 x n+1 (1) 1 x dx = ln |x| (2) udv = uv − vdu (3) 1 ax + bdx = 1 a ln|ax + b| (4) Integrals of Rational Functions
Journal ArticleDOI

On Limits of Wireless Communications in a Fading Environment when UsingMultiple Antennas

TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Book

An Introduction to Multivariate Statistical Analysis

TL;DR: In this article, the distribution of the Mean Vector and the Covariance Matrix and the Generalized T2-Statistic is analyzed. But the distribution is not shown to be independent of sets of Variates.
Related Papers (5)