scispace - formally typeset
Journal ArticleDOI

Achieving near-capacity on a multiple-antenna channel

TLDR
This work provides a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called "soft" inputs and outputs and shows that excellent performance at very high data rates can be attained with either.
Abstract
Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve near-capacity on a multiple-antenna system where the receiver knows the channel. Combining iterative processing with multiple-antenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their single-antenna counterparts. Using a "list" version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called "soft" inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve near-capacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multiple-antenna channel.

read more

Citations
More filters
Journal ArticleDOI

On maximum-likelihood detection and the search for the closest lattice point

TL;DR: A novel algorithm is developed that is inspired by the Pohst enumeration strategy and is shown to offer a significant reduction in complexity compared to the Viterbo-Boutros sphere decoder and is supported by intuitive arguments and simulation results in many relevant scenarios.
Journal ArticleDOI

Bit-Interleaved Coded Modulation

TL;DR: The theoretical foundations of BICM are reviewed under the unified framework of error exponents for mismatched decoding, which allows an accurate analysis without any particular assumptions on the length of the interleaver or independence between the multiple bits in a symbol.
Journal ArticleDOI

Design of low-density parity-check codes for modulation and detection

TL;DR: A coding and modulation technique is studied where the coded bits of an irregular low-density parity-check (LDPC) code are passed directly to a modulator, and thereby outperforms a scheme employing a parallel concatenated (turbo) code by wide margins when there are more transmit than receive antennas.
Book

Fundamentals of Massive MIMO

TL;DR: This is the first complete guide to the physical and engineering principles of Massive MIMO and will guide readers through key topics in multi-cell systems such as propagation modeling, multiplexing and de-multiplexing, channel estimation, power control, and performance evaluation.
Journal ArticleDOI

A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation

TL;DR: A simple encoding algorithm is introduced that achieves near-capacity at sum-rates of tens of bits/channel use and a certain perturbation of the data using a "sphere encoder" can be chosen to further reduce the energy of the transmitted signal.
References
More filters
Journal ArticleDOI

A mathematical theory of communication

TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Journal ArticleDOI

A simple transmit diversity technique for wireless communications

TL;DR: This paper presents a simple two-branch transmit diversity scheme that provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas.
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Journal ArticleDOI

Space-time block codes from orthogonal designs

TL;DR: A generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas and it is shown that many of the codes presented here are optimal in this sense.
Related Papers (5)