scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

Reads0
Chats0
TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Journal ArticleDOI

Deep Audio-visual Speech Recognition

TL;DR: This work compares two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss, built on top of the transformer self-attention architecture.
Journal ArticleDOI

Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning

TL;DR: The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% and real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.
Proceedings ArticleDOI

PPFNet: Global Context Aware Local Features for Robust 3D Point Matching

TL;DR: Qualitative and quantitative evaluations of the PPFNet network suggest increased recall, improved robustness and invariance as well as a vital step in the 3D descriptor extraction performance.
Proceedings ArticleDOI

Neural Attentional Rating Regression with Review-level Explanations

TL;DR: A novel attention mechanism to explore the usefulness of reviews, and a Neural Attentional Regression model with Review-level Explanations (NARRE) for recommendation that consistently outperforms the state-of-the-art recommendation approaches in terms of rating prediction.
Posted Content

Learning To Generate Reviews and Discovering Sentiment

TL;DR: The properties of byte-level recurrent language models are explored and a single unit which performs sentiment analysis is found which achieves state of the art on the binary subset of the Stanford Sentiment Treebank.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)