scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Proceedings ArticleDOI

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

TL;DR: DeepSDF as mentioned in this paper represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape.
Proceedings ArticleDOI

Unsupervised Monocular Depth Estimation with Left-Right Consistency

TL;DR: In this article, the authors propose a novel training objective that enables CNNs to learn to perform single image depth estimation, despite the absence of ground truth depth data, by generating disparity images by training their network with an image reconstruction loss.
Journal ArticleDOI

Convolutional neural networks: an overview and application in radiology

TL;DR: A perspective on the basic concepts of convolutional neural network and its application to various radiological tasks is offered, and its challenges and future directions in the field of radiology are discussed.
Posted Content

Neural Message Passing for Quantum Chemistry

TL;DR: Using MPNNs, state of the art results on an important molecular property prediction benchmark are demonstrated and it is believed future work should focus on datasets with larger molecules or more accurate ground truth labels.
Proceedings ArticleDOI

End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

TL;DR: This paper used a combination of bidirectional LSTM, CNN and CRF for sequence labeling tasks, and achieved state-of-the-art performance on both datasets for POS tagging and CoNLL 2003 corpus for NER.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)