scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

Reads0
Chats0
TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Proceedings ArticleDOI

Deep High-Resolution Representation Learning for Human Pose Estimation

TL;DR: This paper proposes a network that maintains high-resolution representations through the whole process of human pose estimation and empirically demonstrates the effectiveness of the network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.
Proceedings ArticleDOI

Residual Dense Network for Image Super-Resolution

TL;DR: This paper proposes residual dense block (RDB) to extract abundant local features via dense connected convolutional layers and uses global feature fusion in RDB to jointly and adaptively learn global hierarchical features in a holistic way.
Proceedings Article

Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results

TL;DR: The recently proposed Temporal Ensembling has achieved state-of-the-art results in several semi-supervised learning benchmarks, but it becomes unwieldy when learning large datasets, so Mean Teacher, a method that averages model weights instead of label predictions, is proposed.
Posted Content

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

TL;DR: A systematic evaluation of generic convolutional and recurrent architectures for sequence modeling concludes that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutionals should be regarded as a natural starting point for sequence modeled tasks.
Posted Content

Least Squares Generative Adversarial Networks

TL;DR: This paper proposes the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator, and shows that minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)