scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

Reads0
Chats0
TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Book ChapterDOI

Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network

TL;DR: Zhang et al. as discussed by the authors proposed an accurate and lightweight deep network for image super-resolution, which implements a cascading mechanism upon a residual network and achieves state-of-the-art performance.
Journal ArticleDOI

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

TL;DR: The spatiotemporal multi-graph convolution network (ST-MGCN), a novel deep learning model for ride-hailing demand forecasting, is proposed which first encode the non-Euclidean pair-wise correlations among regions into multiple graphs and then explicitly model these correlations using multi- graph convolution.
Posted Content

Recipes for building an open-domain chatbot

TL;DR: Human evaluations show the best models outperform existing approaches in multi-turn dialogue on engagingness and humanness measurements, and the limitations of this work are discussed by analyzing failure cases of the models.
Posted Content

Gated Feedback Recurrent Neural Networks

TL;DR: The empirical evaluation of different RNN units revealed that the proposed gated-feedback RNN outperforms the conventional approaches to build deep stacked RNNs in the tasks of character-level language modeling and Python program evaluation.
Proceedings ArticleDOI

CityPersons: A Diverse Dataset for Pedestrian Detection

TL;DR: In this paper, a new set of person annotations on top of the Cityscapes dataset is introduced, CityPersons, which allows the first time to train one single CNN model that generalizes well over multiple benchmarks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)