scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Proceedings ArticleDOI

BranchyNet: Fast inference via early exiting from deep neural networks

TL;DR: The BranchyNet architecture is presented, a novel deep network architecture that is augmented with additional side branch classifiers that can both improve accuracy and significantly reduce the inference time of the network.
Journal ArticleDOI

MoDL: Model-Based Deep Learning Architecture for Inverse Problems

TL;DR: In this article, a convolution neural network (CNN)-based regularization prior is proposed for inverse problems with the arbitrary structure, where the forward model is explicitly accounted for and a smaller network with fewer parameters is sufficient to capture the image information compared to direct inversion.
Posted Content

A Simple Neural Attentive Meta-Learner

TL;DR: This work proposes a class of simple and generic meta-learner architectures that use a novel combination of temporal convolutions and soft attention; the former to aggregate information from past experience and the latter to pinpoint specific pieces of information.
Posted Content

A Recurrent Latent Variable Model for Sequential Data

TL;DR: In this article, the authors explore the use of latent random variables into the dynamic hidden state of a recurrent neural network (RNN) by combining elements of the variational autoencoder.
Proceedings ArticleDOI

Bottom-Up Object Detection by Grouping Extreme and Center Points

TL;DR: The proposed method performs on-par with the state-of-the-art region based detection methods, with a bounding box AP of 43.7% on COCO test-dev and extreme point guided segmentation further improves this to 34.6% Mask AP.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)