scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

Reads0
Chats0
TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Journal ArticleDOI

Text Classification Algorithms: A Survey

TL;DR: An overview of text classification algorithms is discussed, which covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods.
Journal ArticleDOI

Deep video portraits

TL;DR: In this paper, a generative neural network with a novel space-time architecture is proposed to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor.
Journal ArticleDOI

Fine-Tuning CNN Image Retrieval with No Human Annotation

TL;DR: It is shown that both hard-positive and hard-negative examples, selected by exploiting the geometry and the camera positions available from the 3D models, enhance the performance of particular-object retrieval.
Proceedings Article

An end-to-end spatio-temporal attention model for human action recognition from skeleton data

TL;DR: Zhang et al. as mentioned in this paper proposed an end-to-end spatial and temporal attention model for human action recognition from skeleton data, which learns to selectively focus on discriminative joints of skeleton within each frame of the inputs and pays different levels of attention to the outputs of different frames.
Proceedings Article

Deep Variational Information Bottleneck

TL;DR: Deep Variational Information Bottleneck (Deep VIB) as discussed by the authors is a variational approximation to the information bottleneck of Tishby et al. This variational approach allows us to parameterize the bottleneck model using a neural network and leverage the reparameterization trick for efficient training.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)