scispace - formally typeset
Open AccessProceedings Article

Adam: A Method for Stochastic Optimization

Reads0
Chats0
TLDR
This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

read more

Citations
More filters
Posted Content

Learning to See in the Dark

TL;DR: A pipeline for processing low-light images is developed, based on end-to-end training of a fully-convolutional network that operates directly on raw sensor data and replaces much of the traditional image processing pipeline, which tends to perform poorly on such data.
Proceedings ArticleDOI

D2-Net: A Trainable CNN for Joint Description and Detection of Local Features

TL;DR: This work proposes an approach where a single convolutional neural network plays a dual role: It is simultaneously a dense feature descriptor and a feature detector, and shows that this model can be trained using pixel correspondences extracted from readily available large-scale SfM reconstructions, without any further annotations.
Proceedings ArticleDOI

Learning Depth from Monocular Videos Using Direct Methods

TL;DR: In this article, a differentiable implementation of direct visual odometry (DVO) along with a novel depth normalization strategy is proposed to train a depth CNN without a pose CNN predictor.
Proceedings Article

Training deep neural-networks using a noise adaptation layer

TL;DR: This study presents a neural-network approach that optimizes the same likelihood function as optimized by the EM algorithm but extended to the case where the noisy labels are dependent on the features in addition to the correct labels.
Proceedings ArticleDOI

Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

TL;DR: This paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations and obtain state-of-the-art performance on 8 benchmark datasets within emotion, sentiment and sarcasm detection using a single pretrained model.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Related Papers (5)