scispace - formally typeset
Journal ArticleDOI

Amino acids and gaseous signaling

Reads0
Chats0
TLDR
Recent advances on gaseous signaling have greatly expanded basic knowledge of amino acid biochemistry and nutrition, which will aid in the design of new nutritional and pharmacological means to prevent and treat major health problems related to developmental biology and nutrient metabolism.
Abstract
Gases, such as nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) are known toxic pollutants in the air. However, they are now recognized as important signaling molecules synthesized in animals and humans from arginine, glycine (heme), and cysteine, respectively. At physiological levels, NO, CO, and SO2 activate guanylyl cyclase to generate cGMP which elicits a variety of responses (including relaxation of vascular smooth muscle cells, hemodynamics, neurotransmission, and cell metabolism) via cGMP-dependent protein kinases. H2S is also a crucial regulator of both neurological function and endothelium-dependent relaxation through cGMP-independent mechanisms involving stimulation of membrane KATP channels and intracellular cAMP signaling. Additionally, NO, CO, and H2S confer cytoprotective and immunomodulatory effects. Moreover, NH3 is a major product of amino acid catabolism and profoundly affects the function of neurons and the vasculature through glutamine-dependent inhibition of NO synthesis. Emerging evidence shows that amino acids are not only precursors for these endogenous gases, but are also regulators of their production in a cell-specific manner. Thus, recent advances on gaseous signaling have greatly expanded our basic knowledge of amino acid biochemistry and nutrition. These exciting discoveries will aid in the design of new nutritional and pharmacological means to prevent and treat major health problems related to developmental biology and nutrient metabolism, including intrauterine growth restriction, preterm birth, aging, neurological disorders, cancer, obesity, diabetes, and cardiovascular disease.

read more

Citations
More filters
Journal ArticleDOI

Amino acids: metabolism, functions, and nutrition

TL;DR: Dietary supplementation with one or a mixture of these functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan, may be beneficial for ameliorating health problems at various stages of the life cycle and optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance.

Review of evidence on health aspects of air pollution – REVIHAAP Project. Technical Report. World Health Organization Regional Office for Europe 2013

Bernard Festy
TL;DR: In this paper, the authors present answers to 24 questions relevant to reviewing European policies on air pollution and to addressing health aspects of these policies, which were developed by a large group of scientists engaged in the WHO project REVIHAAP.
Journal ArticleDOI

Functional Amino Acids in Growth, Reproduction, and Health

TL;DR: Both NEAA and EAA should be considered in the classic "ideal protein" concept or formulation of balanced diets to maximize protein accretion and optimize health in animals and humans.
Journal ArticleDOI

Proline and hydroxyproline metabolism: implications for animal and human nutrition

TL;DR: Work with young pigs (a widely used animal model for studying infant nutrition) has shown that supplementing 0.1% proline to a proline-free chemically defined diet dependently improved daily growth rate and feed efficiency while reducing concentrations of urea in plasma.
Journal ArticleDOI

Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health

TL;DR: Recent studies indicate that l-arginine supplementation stimulates mitochondrial biogenesis and brown adipose tissue development possibly through the enhanced synthesis of cell-signaling molecules as well as the increased expression of genes that promote whole-body oxidation of energy substrates.
References
More filters
Journal ArticleDOI

Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.

TL;DR: The vascular effects of EDRF released from perfused bovine intrapulmonary artery and vein were compared with the effects of NO delivered by superfusion over endothelium-denuded arterial and venous strips arranged in a cascade to determine whether nitric oxide (NO) is responsible for the vascular smooth muscle relaxation elicited by endothelia-derived relaxing factor (EDRF).
Journal ArticleDOI

Glutathione Metabolism and Its Implications for Health

TL;DR: Animal and human studies demonstrate that adequate protein nutrition is crucial for the maintenance of GSH homeostasis, and compelling evidence shows that GSH synthesis is regulated primarily by gamma-glutamylcysteine synthetase activity, cysteine availability, and GSH feedback inhibition.
Journal ArticleDOI

Arginine metabolism : nitric oxide and beyond

TL;DR: Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ and subcellular levels.
Journal ArticleDOI

THE HEME OXYGENASE SYSTEM:A Regulator of Second Messenger Gases

TL;DR: This review highlights the current information on molecular and biochemical properties of HO-1 and HO-2 and addresses the possible mechanisms for mutual regulatory interactions between the CO- and NO-generating systems.
Related Papers (5)