scispace - formally typeset
Journal ArticleDOI

Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine

TLDR
Recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed and could stimulate researchers to synthesize new advanced hierarchically porous solids.
Abstract
Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

read more

Citations
More filters
Journal ArticleDOI

Covalent organic frameworks: a materials platform for structural and functional designs

TL;DR: Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores as mentioned in this paper.
Journal ArticleDOI

Hierarchically porous materials: synthesis strategies and structure design

TL;DR: This review addresses recent advances made in studies of hierarchically porous materials and methods to control their structure and morphology and hopes that this review will be helpful for those entering the field and also for those in the field who want quick access to helpful reference information.
Journal ArticleDOI

From fundamentals to applications: a toolbox for robust and multifunctional MOF materials.

TL;DR: This review provides insight into both existing structures and emerging aspects of MOFs, as well as emerging trends of MOF development.
Journal ArticleDOI

Recent advances in the textural characterization of hierarchically structured nanoporous materials

TL;DR: This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites and strongly emphasizes the importance of combining advanced physical adsorption with other complementary experimental techniques for obtaining a reliable and comprehensive understanding of the texture of hierarchically structured materials.
Journal ArticleDOI

Metal-Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting

TL;DR: In this paper, a facile and controllable synthesis strategy for nickel-cobalt bimetal phosphide nanotubes as highly efficient electrocatalysts for overall water splitting via low-temperature phosphorization from a bimetallic metal-organic framework (MOF-74) precursor is reported.
References
More filters
Journal ArticleDOI

Room-temperature ultraviolet nanowire nanolasers

TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Journal ArticleDOI

Carbon Dioxide Capture in Metal–Organic Frameworks

TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Journal ArticleDOI

Nanowire dye-sensitized solar cells

TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Journal ArticleDOI

Sodium‐Ion Batteries

TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Journal ArticleDOI

Carbon Dioxide Capture: Prospects for New Materials

TL;DR: The most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.
Related Papers (5)