scispace - formally typeset
Journal ArticleDOI

Broadband Light Bending with Plasmonic Nanoantennas

TLDR
Unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers is experimentally demonstrated using an extremely thin plasmonic layer consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface.
Abstract
The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished by using an extremely thin plasmonic layer (~λ/50) consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface. Anomalous light-bending phenomena, including negative angles of refraction and reflection, are observed in the operational wavelength range.

read more

Citations
More filters
Journal ArticleDOI

Flat Optics With Designer Metasurfaces

TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Journal ArticleDOI

Planar Photonics with Metasurfaces

TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Journal ArticleDOI

Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.

TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Journal ArticleDOI

Metasurface holograms reaching 80% efficiency

TL;DR: The design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process.
Journal ArticleDOI

Dielectric gradient metasurface optical elements.

TL;DR: The experimental realization and operation of dielectric gradient metasurface optical elements capable of also achieving high efficiencies in transmission mode in the visible spectrum are described.
References
More filters
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Journal ArticleDOI

Far-field optical hyperlens magnifying sub-diffraction-limited objects.

TL;DR: Experimental demonstration of the optical hyperlens for sub-diffraction-limited imaging in the far field and opens up possibilities in applications such as real-time biomolecular imaging and nanolithography.
Related Papers (5)