scispace - formally typeset
Open AccessJournal ArticleDOI

California's Drought of the Future: A Midcentury Recreation of the Exceptional Conditions of 2012-2017.

TLDR
Overall, the midcentury drought is observed to be significantly worse, with many more extreme heat days, record‐low snowpack, increased soil drying, and record‐high forest mortality.
Abstract
The California drought of 2012-2016 was a record-breaking event with extensive social, political, and economic repercussions. The impacts were widespread and exposed the difficulty in preparing for the effects of prolonged dry conditions. Although the lessons from this drought drove important changes to state law and policy, there is little doubt that climate change will only exacerbate future droughts. To understand the character of future drought, this paper examines this recent drought period retrospectively and prospectively, that is, as it occurred historically and if similar dynamical conditions to the historical period were to arise 30 years later (2042-2046) subject to the effects of climate change. Simulations were conducted using the Weather Research and Forecasting model using the pseudo global warming method. The simulated historical and future droughts are contrasted in terms of temperature, precipitation, snowpack, soil moisture, evapotranspiration, and forest health. Overall, the midcentury drought is observed to be significantly worse, with many more extreme heat days, record-low snowpack, increased soil drying, and record-high forest mortality. With these findings in mind, the data sets developed in this study provide a means to structure future drought planning around a drought scenario that is realistic and modeled after a memorable historical analog.

read more

Citations
More filters
Journal ArticleDOI

A low-to-no snow future and its impacts on water resources in the western United States

TL;DR: In this paper, the authors examine the changes and trickle-down impacts of snow loss in the western United States (WUS) and discuss the adaptation opportunities available to mitigate against such snow losses, and suggest that through proactive implementation of soft and hard adaptation strategies, there is potential to build resilience to extreme, episodic and eventually, persistent low-to-no snow conditions.

Causes of Extreme Ridges that Induce California Droughts

TL;DR: In this article, a hierarchy of climate models was used to show that extreme ridges in this region are associated with a continuum of zonal wavenumber-5 circumglobal teleconnection patterns that originate from midlatitude atmospheric internal dynamics.
References
More filters
Journal ArticleDOI

The NCEP/NCAR 40-Year Reanalysis Project

TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.

A Description of the Advanced Research WRF Version 3

TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Journal ArticleDOI

Robust Responses of the Hydrological Cycle to Global Warming

TL;DR: In this paper, the authors examined some aspects of the hydrological cycle that are robust across the models, including the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and decrease in the horizontal sensible heat transport in the extratropics.
Journal ArticleDOI

Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models

TL;DR: In this article, the AER line-by-line (LBL) models were compared with the RTMIP line-By-line results in the longwave and shortwave for clear sky scenarios previously examined by the radiative transfer model intercomparison project.

A Description of the Advanced Research WRF Version 2

TL;DR: The Weather Research and Forecasting (WRF) model as mentioned in this paper was developed as a collaborative effort among the NCAR Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department of Defense's Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (F
Related Papers (5)