scispace - formally typeset
Open AccessJournal ArticleDOI

Click Chemistry: 1,2,3‐Triazoles as Pharmacophores

TLDR
The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.
Abstract
The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

read more

Citations
More filters
Journal ArticleDOI

New mono- and bidentate P-ligands using one-pot click-chemistry: synthesis and application in Rh-catalyzed hydroformylation

TL;DR: In this article, three families of new phosphorus ligands have been prepared using the click-chemistry approach, proceeding in only two steps and without intermediate P-protection, allowing the high yield production of mono- and bidentate P-ligands, bearing at least one P-O bond.
Journal ArticleDOI

Catalytic Enantioselective Addition of an Allyl Group to Ketones Containing a Tri-, a Di-, or a Monohalomethyl Moiety. Stereochemical Control Based on Distinctive Electronic and Steric Attributes of C-Cl, C-Br, and C-F Bonds.

TL;DR: The approach is scalable and offers an expeditious route to the enantioselective synthesis of versatile and otherwise difficult to access aldehydes that bear an α-halo-substituted quaternary carbon stereogenic center as well as an assortment of 2,2-disubstituting epoxides that contain an easily modifiable alkene.
Journal ArticleDOI

A pyrene-functionalized triazole-linked hexahomotrioxacalix[3]arene as a fluorescent chemosensor for Zn²⁺ ions

TL;DR: A pyrenyl appended hexahomotrioxacalix[3]arene L featuring 1,2,3-triazole linkers was synthesized as a fluorescent chemosensor for Zn2+ in mixed aqueous media.
Journal ArticleDOI

1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap

TL;DR: This work reports the first example of this class of reaction, with a copper-based system that efficiently enables the synthesis of N-carbamoyl 1,2,3-triazoles by [3+2] cycloaddition ofN-carbonoyl azides and alkynes.
References
More filters
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Journal ArticleDOI

Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.

TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Journal ArticleDOI

Cu-catalyzed azide-alkyne cycloaddition.

TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Journal ArticleDOI

The growing impact of click chemistry on drug discovery.

TL;DR: The copper-(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reactants.
Related Papers (5)