scispace - formally typeset
Open AccessJournal ArticleDOI

Click Chemistry: 1,2,3‐Triazoles as Pharmacophores

TLDR
The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.
Abstract
The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

read more

Citations
More filters
Journal ArticleDOI

Medicinal attributes of 1,2,3-triazoles: Current developments

TL;DR: The present work aims to summarize the current approaches adopted for the synthesis of the 1,2,3-triazole and medicinal significance of these architectures as a lead structure for the discovery of drug molecules such as COX-1/COX-2 inhibitors, HIV protease inhibitors, CB1 cannabinoid receptor antagonist and much more which are in the pipeline of clinical trials.
Journal ArticleDOI

Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update.

TL;DR: The recent results described in the literature since 2010 are reviewed, classified according to the nature of the catalyst precursor: copper(I) or copper(II) salts or complexes, metallic or nano-particulated copper and several solid-supported copper systems.
Journal ArticleDOI

Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications.

TL;DR: The ruthenium-catalyzed azide alkyne cycloaddition affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-Catalyzed reaction providing the 1,4-isomer.
Journal ArticleDOI

Robust Ruthenium(II)-Catalyzed C–H Arylations: Carboxylate Assistance for the Efficient Synthesis of Angiotensin-II-Receptor Blockers

TL;DR: Ruthenium(II) complexes have emerged as effective catalysts for C-H arylations of tetrazolyl-substituted arenes by chelation assistance.
Journal ArticleDOI

Metal-Catalyzed Azide-Alkyne “Click” Reactions: Mechanistic Overview and Recent Trends

TL;DR: In this paper, a review of the mechanistic aspects and recent trends of metal-catalyzed azide-alkyne cycloaddition (MAAC) reactions with catalysts based on various metals (Cu, Ru, Ag, Au, Ir, Ni, Zn, Ln), although Cu (I) catalysts are still the most used ones.
References
More filters
Journal ArticleDOI

‘Click’ Chemistry in Polymer and Materials Science

TL;DR: The metal catalyzed azide/alkyne "click" reaction (a variation of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides) represents an important contribution towards this endeavor.
Journal ArticleDOI

1,3‐Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science

TL;DR: The Minireview discusses whether click chemistry is a miracle tool or an ephemeral trend, and the number of publications dealing with click chemistry has grown exponentially over the last two years.
Journal ArticleDOI

Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen

TL;DR: In this paper, the authors show how in der Natur am haufigsten vorkommenden Verbindungen, so fallt auf, dass the Bildung von Kohlenstoff-Heteroatom-Bindungen gegenuber der von KHO-Kohlenstoffs-KHO-Bindingsen deutlich bevorzugt is, and das Medium naturlicher Reaktionen zumeist Wasser ist.
Journal ArticleDOI

CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective

TL;DR: An overview of the mechanism of this remarkable reaction is presented as a means to explain the myriad of experimental results, particularly the various methods of catalyst generation, solvent and substrate effects, and choice of base or ligand as discussed by the authors.
Journal ArticleDOI

The Convergence of Synthetic Organic and Polymer Chemistries

TL;DR: Polymer synthesis methods now being developed will yield well-defined synthetic macromolecules that are capable of mimicking many of the features of proteins and other natural materials.
Related Papers (5)