scispace - formally typeset
Open AccessJournal ArticleDOI

Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN

Reads0
Chats0
TLDR
In this paper, the authors derived consistent sets of band parameters such as band gaps, crystal field splittings, band-gap deformation potentials, effective masses, and Luttinger and EP parameters for AlN, GaN, and InN in the zinc-blende and wurtzite phases employing many-body perturbation theory in the G0W0 approximation.
Abstract
We have derived consistent sets of band parameters band gaps, crystal field splittings, band-gap deformation potentials, effective masses, and Luttinger and EP parameters for AlN, GaN, and InN in the zinc-blende and wurtzite phases employing many-body perturbation theory in the G0W0 approximation. The G0W0 method has been combined with density-functional theory DFT calculations in the exact-exchange optimized effective potential approach to overcome the limitations of local-density or gradient-corrected DFT functionals. The band structures in the vicinity of the point have been used to directly parametrize a 44 k·p Hamiltonian to capture nonparabolicities in the conduction bands and the more complex valence-band structure of the wurtzite phases. We demonstrate that the band parameters derived in this fashion are in very good agreement with the available experimental data and provide reliable predictions for all parameters, which have not been determined experimentally so far.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

When group-III nitrides go infrared: New properties and perspectives

TL;DR: In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Journal ArticleDOI

MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions.

TL;DR: For example, MN15 as mentioned in this paper gives the second smallest mean unsigned error (MUE) for 54 data on inherently multiconfigurational systems, and the smallest MUE for 313 single-reference chemical data, with MUEs for these three categories of 4.75, 1.85, and 0.25 kcal mol−1, respectively.
Journal ArticleDOI

Auger recombination rates in nitrides from first principles

TL;DR: In this article, the Auger coefficient for wurtzite InGaN is calculated from first-principles density-functional and many-body perturbation theory.

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.

TL;DR: Band gaps and band alignments for AlN, GaN, InN, and InGaN alloys are investigated using density functional theory and it is found that relative alignments are less sensitive to the choice of XC functional.
References
More filters
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Journal ArticleDOI

Ground state of the electron gas by a stochastic method

TL;DR: An exact stochastic simulation of the Schroedinger equation for charged Bosons and Fermions was used to calculate the correlation energies, to locate the transitions to their respective crystal phases at zero temperature within 10%, and to establish the stability at intermediate densities of a ferromagnetic fluid of electrons.
Journal Article

The ground state of the electron gas by a stochastic method

TL;DR: The results of the election were reported by the National Resource for Computing in Chemistry (NCI) as discussed by the authors, a non-profit organization for information technology in the chemical industry, which is based at the Berkeley Lab.
Journal ArticleDOI

Band parameters for III–V compound semiconductors and their alloys

TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Journal ArticleDOI

New method for calculating the one-particle green's function with application to the electron-gas problem

TL;DR: In this paper, a set of self-consistent equations for the one-electron Green's function have been derived, which correspond to an expansion in a screened potential rather than the bare Coulomb potential.
Related Papers (5)