scispace - formally typeset
Open AccessJournal ArticleDOI

Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss

TLDR
In this article, a transgenic model of diphtheria-toxin-induced acute selective near-total beta-cell ablation was used to investigate whether adult mammals can differentiate (regenerate) new beta-cells after extreme, total β-cell loss, as in diabetes.
Abstract
Pancreatic insulin-producing beta-cells have a long lifespan, such that in healthy conditions they replicate little during a lifetime. Nevertheless, they show increased self-duplication after increased metabolic demand or after injury (that is, beta-cell loss). It is not known whether adult mammals can differentiate (regenerate) new beta-cells after extreme, total beta-cell loss, as in diabetes. This would indicate differentiation from precursors or another heterologous (non-beta-cell) source. Here we show beta-cell regeneration in a transgenic model of diphtheria-toxin-induced acute selective near-total beta-cell ablation. If given insulin, the mice survived and showed beta-cell mass augmentation with time. Lineage-tracing to label the glucagon-producing alpha-cells before beta-cell ablation tracked large fractions of regenerated beta-cells as deriving from alpha-cells, revealing a previously disregarded degree of pancreatic cell plasticity. Such inter-endocrine spontaneous adult cell conversion could be harnessed towards methods of producing beta-cells for diabetes therapies, either in differentiation settings in vitro or in induced regeneration.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Pancreatic Plasticity and Reprogramming: Novel Directions Towards Disease Therapy

TL;DR: Findings and potential approaches using cell types that are developmentally related to β-cells, and the known molecular players that may be used to control β-cell-directed transdifferentiation are highlighted.
Journal ArticleDOI

A novel GPR119 agonist DA-1241 preserves pancreatic function via the suppression of ER stress and increased PDX1 expression.

TL;DR: In this paper, a small molecule G protein-coupled receptor 119 (GPR119) agonist, DA-1241, was used in early clinical development for type 2 diabetic patients.

Cellular Mechanisms Of Mammalian Liver Regeneration

TL;DR: The findings reveal that contrary to stem cell-based models of regeneration, virtually all new hepatocytes come from pre-existing hepatocytes with no evidence of BECs functioning as FSCs, and hepatocyte lineage tracing reveals in addition to replication, they can function as F SCs.

Direct Reprogramming: A New Strategy for the Treatment of

LI-Wei Ren, +1 more
TL;DR: Studies on the direct reprogramming of endoderm-derived somatic cell types into functional β-like cells and its primary application in diabetic animal models are reviewed.

Study of the Proliferation, Function and Death of Insulin-Producing Beta-Cells in vitro: Role of the Transcription Factor ZBED6

Xuan Wang
TL;DR: It is proposed that ZBED6 supports proliferation and survival of beta cells, possibly at the expense of specialized beta cell function, and it is possible thatbeta cells, by switching from full length to a truncated form of ZBed6, can decide the subcellular localization of ZbED6, thereby achieving differential ZB ED6-mediated transcriptional regulation.
References
More filters
Book

Manipulating the mouse embryo: A laboratory manual

TL;DR: Here are recorded the tech- niques for preparing, inserting and analysing DNA sequences, for retroviral infection of mice, for production and use of EC and EK cells as vehicles for engineered sequences and for nuclear transplantation - all against a background of the basic procedures required for pro- ducing and handling the em- bryos.
Journal ArticleDOI

Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus

TL;DR: In contrast to existing lacZ reporter lines, where lacZ expression cannot easily be detected in living tissue, the EYFP and ECFP reporter strains are useful for monitoring the expression of Cre and tracing the lineage of these cells and their descendants in cultured embryos or organs.
Journal ArticleDOI

Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation.

TL;DR: This work introduces a method for genetic lineage tracing to determine the contribution of stem cells to a tissue of interest and suggests that terminally differentiated β-cells retain a significant proliferative capacity in vivo and casts doubt on the idea that adult stem cells have a significant role in β-cell replenishment.
Journal ArticleDOI

In vivo reprogramming of adult pancreatic exocrine cells to beta-cells.

TL;DR: This study identifies a specific combination of three transcription factors (Ngn3) Pdx1 and Mafa that reprograms differentiated pancreatic exocrine cells in adult mice into cells that closely resemble β-cells, and suggests a general paradigm for directing cell reprogramming without reversion to a pluripotent stem cell state.
Journal ArticleDOI

Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats.

TL;DR: It is reported that exendin-4, a long-acting GLP-I agonist, stimulates both the differentiation of beta-cells from ductal progenitor cells (neogenesis) and proliferation of Beta-cells when administered to rats and holds promise as a novel therapy to stimulate beta-cell growth and differentiation when administer to diabetic individuals with reduced beta- cell mass.
Related Papers (5)