scispace - formally typeset
Proceedings ArticleDOI

DaDianNao: A Machine-Learning Supercomputer

TLDR
This article introduces a custom multi-chip machine-learning architecture, showing that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system.
Abstract
Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.

read more

Citations
More filters
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Posted Content

In-Datacenter Performance Analysis of a Tensor Processing Unit

TL;DR: This paper evaluates a custom ASIC-called a Tensor Processing Unit (TPU)-deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN) and compares it to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the samedatacenters.
Journal ArticleDOI

EIE: efficient inference engine on compressed deep neural network

TL;DR: In this paper, the authors proposed an energy efficient inference engine (EIE) that performs inference on a compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing.
Journal ArticleDOI

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

TL;DR: In this paper, the authors provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs, and discuss various hardware platforms and architectures that support DNN, and highlight key trends in reducing the computation cost of deep neural networks either solely via hardware design changes or via joint hardware and DNN algorithm changes.
Posted Content

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1

TL;DR: A binary matrix multiplication GPU kernel is written with which it is possible to run the MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Multi-column deep neural networks for image classification

TL;DR: In this paper, a biologically plausible, wide and deep artificial neural network architectures was proposed to match human performance on tasks such as the recognition of handwritten digits or traffic signs, achieving near-human performance.
Proceedings ArticleDOI

The PARSEC benchmark suite: characterization and architectural implications

TL;DR: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs), and shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic.
Related Papers (5)