scispace - formally typeset
Open AccessJournal ArticleDOI

Diaschisis: past, present, future.

Emmanuel Carrera, +1 more
- 01 Sep 2014 - 
- Vol. 137, Iss: 9, pp 2408-2422
Reads0
Chats0
TLDR
The development of new imaging techniques allows a better understanding of the complexity of brain organization and it is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion.
Abstract
After a century of false hopes, recent studies have placed the concept of diaschisis at the centre of the understanding of brain function. Originally, the term 'diaschisis' was coined by von Monakow in 1914 to describe the neurophysiological changes that occur distant to a focal brain lesion. In the following decades, this concept triggered widespread clinical interest in an attempt to describe symptoms and signs that the lesion could not fully explain. However, the first imaging studies, in the late 1970s, only partially confirmed the clinical significance of diaschisis. Focal cortical areas of diaschisis (i.e. focal diaschisis) contributed to the clinical deficits after subcortical but only rarely after cortical lesions. For this reason, the concept of diaschisis progressively disappeared from the mainstream of research in clinical neurosciences. Recent evidence has unexpectedly revitalized the notion. The development of new imaging techniques allows a better understanding of the complexity of brain organization. It is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion (i.e. connectional diaschisis). As opposed to focal diaschisis, connectional diaschisis, focusing on determined networks, seems to relate more consistently to the clinical findings. This is particularly true after stroke in the motor and attentional networks. Furthermore, normalization of remote connectivity changes in these networks relates to a better recovery. In the future, to investigate the clinical role of diaschisis, a systematic approach has to be considered. First, emerging imaging and electrophysiological techniques should be used to precisely map and selectively model brain lesions in human and animals studies. Second, the concept of diaschisis must be applied to determine the impact of a focal lesion on new representations of the complexity of brain organization. As an example, the evaluation of remote changes in the structure of the connectome has so far mainly been tested by modelization of focal brain lesions. These changes could now be assessed in patients suffering from focal brain lesions (i.e. connectomal diaschisis). Finally, and of major significance, focal and non-focal neurophysiological changes distant to the lesion should be the target of therapeutic strategies. Neuromodulation using transcranial magnetic stimulation is one of the most promising techniques. It is when this last step will be successful that the concept of diaschisis will gain all the clinical respectability that could not be obtained in decades of research.

read more

Citations
More filters
Journal ArticleDOI

The connectomics of brain disorders

TL;DR: This work considers how brain-network topology shapes neural responses to damage, highlighting key maladaptive processes and the resources and processes that enable adaptation, and shows how knowledge of network topology allows for predictive models of the spread and functional consequences of brain disease.
Journal ArticleDOI

Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke

TL;DR: Key organizational features of brain networks to brain–behavior relationships in stroke are linked to show that visual memory and verbal memory deficits are better predicted by functional connectivity than by lesion location, and visual and motor deficits arebetter predicted by lesions location than functional connectivity.
Journal ArticleDOI

The Human Thalamus Is an Integrative Hub for Functional Brain Networks

TL;DR: It is demonstrated that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks, which support the idea that the thalamus is involved in integrate information across cortical networks.
Journal ArticleDOI

Global brain inflammation in stroke.

TL;DR: Future efforts towards understanding the mechanisms governing the emergence of so-called global brain inflammation would facilitate modulation of this inflammation as a potential therapeutic strategy for stroke.
Journal ArticleDOI

Mapping Symptoms to Brain Networks with the Human Connectome.

TL;DR: The Brain Connectome and New Methods of Lesion Analysis Complex neurologic and psychiatric syndromes cannot be understood on the basis of focal brain lesions.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Complex network measures of brain connectivity: uses and interpretations.

TL;DR: Construction of brain networks from connectivity data is discussed and the most commonly used network measures of structural and functional connectivity are described, which variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, and test resilience of networks to insult.
Journal ArticleDOI

Mapping the Structural Core of Human Cerebral Cortex

TL;DR: The spatial and topological centrality of the core within cortex suggests an important role in functional integration and a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants.
Journal ArticleDOI

Functional network organization of the human brain

TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.
Journal ArticleDOI

The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Related Papers (5)