scispace - formally typeset
Open AccessJournal ArticleDOI

Drop Impact on a Solid Surface

Christophe Josserand, +1 more
- 08 Jan 2016 - 
- Vol. 48, Iss: 1, pp 365-391
Reads0
Chats0
TLDR
In this article, the authors focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of liquid inertia, viscosity, and surface tension, but also the surrounding gas.
Abstract
A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

read more

Citations
More filters
Journal ArticleDOI

Explosive behavior during binary-droplet impact on superheated substrates

TL;DR: In this article, the existence of a new regime termed explosive boiling for impact of binary (composed of two miscible liquids) droplets on superheated substrates at temperatures between the respective Leidenfrost temperatures of the two liquid constituents.
Journal ArticleDOI

Waterbowls: Reducing Impacting Droplet Interactions by Momentum Redirection

TL;DR: In this article, superhydrophobic surfaces can dramatically reduce the transport of mass or energy from impacting droplets by making them bounce off, but the transport process is dependent on both the contact time and the contact distance.
Journal ArticleDOI

Numerical investigation of water droplet impact on PEM fuel cell flow channel surface

TL;DR: In this paper, a numerical investigation of water impact on the channel surface opposite to the GDL is carried out using the volume of fluid (VOF) method, and the effects of impact velocity, droplet size, surface contact angle, temperature and impact angle on the water impact process are investigated.
Journal ArticleDOI

Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface

TL;DR: In this paper, a set of parameters such as impacting velocity, drop size etc. were combined to form three key non-dimensional parameters of We, Oh and βi (size ratio of hydrophilic dot to drop).
References
More filters
Journal ArticleDOI

Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ...

TL;DR: In this article, a review deals with drop impacts on thin liquid layers and dry surfaces, referred to as splashing, and their propagation is discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound.
Journal ArticleDOI

Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating

TL;DR: An easily fabricated, transparent, and oil-rebounding superamphiphobic coating is designed, based on low-energy surfaces and roughness on the nano- and micrometer scales.
Journal ArticleDOI

Inkjet printing of single-crystal films

TL;DR: It is shown that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces.
Journal ArticleDOI

Robust omniphobic surfaces

TL;DR: Four design parameters are proposed that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid, that allow two different families of re-entrant surfaces to be produced.
Journal ArticleDOI

Phenomena of liquid drop impact on solid and liquid surfaces

TL;DR: The fluid dynamic phenomena of liquid drop impact are described and reviewed in this article, and specific conditions under which the above phenomena did occur in experiments are analyzed and the characteristics of drop impact phenomena are described in detail.
Related Papers (5)