scispace - formally typeset
Journal ArticleDOI

Dynamical assessment of physiological systems and states using recurrence plot strategies

Charles L. Webber, +1 more
- 01 Feb 1994 - 
- Vol. 76, Iss: 2, pp 965-973
Reads0
Chats0
TLDR
This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract
Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

read more

Citations
More filters
Journal ArticleDOI

Heart Rate Variability Is It Influenced by Disturbed Sinoatrial Node Function

TL;DR: Analysis of heart rate variability (HRV) is commonly used to assess the influences of the autonomic nervous system on the heart; however, its relation to the sinoatrial node function has not been clearly defined.
Journal ArticleDOI

Cardiovascular changes of conscious rats after simulated microgravity with and without daily -Gx gravitation

TL;DR: It is demonstrated that daily -G(x) for as short as 1 h is sufficient to prevent postsuspension cardiovascular alteration in conscious rats after a medium-term SUS.
Journal ArticleDOI

Early Detection of Agglomeration in Conical Spouted Beds Using Recurrence Plots

TL;DR: In this paper, the agglomeration of particles in a conical spouted bed was investigated using a recurrence plot (RP) and recurrence quantification analysis (RQA) of the pressure fluctuations (PFs) and acoustic emission (AE) signals.
Journal ArticleDOI

Recurrence quantification analysis of electrochemical noise data during pit development

TL;DR: Recurrence quantification analysis (RQA) is used to study EN time series of stainless steel AISI 316 samples immersed in a mildly corrosive electrolyte and finds that RQA of current and potential time series reveal different information: current time series provides detailed information on the kinetics of the pitting corrosion process.
Journal ArticleDOI

Statistical approaches for investigating silk properties

TL;DR: Amino acid repeats or motifs have engendered interest because of their significance for protein physical characteristics as well as folding properties of spider dragline silk proteins as discussed by the authors, which are composed of long repetitive sections and relatively short non-repetitive sections that are known to interact to generate the very peculiar mechanical and solubility properties of silk.
References
More filters
Journal ArticleDOI

Measuring the Strangeness of Strange Attractors

TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.
Journal ArticleDOI

Recurrence Plots of Dynamical Systems

TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Journal ArticleDOI

Embeddings and delays as derived from quantification of recurrence plots

TL;DR: Recurrence plots have been advocated as a useful diagnostic tool for the assessment of dynamical time series by quantifying certain features of these plots which may be helpful in determining embeddings and delays.
Journal ArticleDOI

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

TL;DR: In this paper, it was shown that the correlation dimension of the Grassberger-Procaccia algorithm cannot exceed the value 2 log 10N if N is the number of points in the time series, and when this bound is saturated it is thus not legitimate to conclude that low dimensional dynamics is present.
Related Papers (5)