scispace - formally typeset
Journal ArticleDOI

Dynamical assessment of physiological systems and states using recurrence plot strategies

Charles L. Webber, +1 more
- 01 Feb 1994 - 
- Vol. 76, Iss: 2, pp 965-973
Reads0
Chats0
TLDR
This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract
Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

read more

Citations
More filters
Journal ArticleDOI

Recurrence-based analysis of barrier breakup in the standard nontwist map.

TL;DR: It is shown that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves and the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot.
Journal ArticleDOI

Determining rhythmicity and determinism of temperature curves in septic and non-septic critically ill patients through chronobiological and recurrence quantification analysis: a pilot study

TL;DR: Increased temperature rhythmicity during ICU entry was related with lower severity of disease and better clinical outcomes, whereas the more deterministic CBT patterns were found in less critically ill patients with shorter ICU stay.
Journal ArticleDOI

Nonlinear and Non-Stationary Detection for Measured Dynamic Signal from Bridge Structure Based on Adaptive Decomposition and Multiscale Recurrence Analysis

TL;DR: In this article, a method that combines the adaptive signal decomposition with the recurrence analysis is proposed to solve the difficulty of testing nonlinearity and non-stationarity of bridge structure signals.
Journal ArticleDOI

Correlation entropy of synaptic input-output dynamics

TL;DR: This work introduces the correlation entropy of the synaptic input-output map as a measure of synaptic reliability which explicitly includes the microscopic dynamics and finds that cortical synapses show a low-dimensional chaos driven by the natural input pattern.
Journal Article

Recurrence Quantification Analysis and Neural Networks for Emotional EEG Classification

TL;DR: A novel approach for classification of emotional states is presented using electroencephalogram (EEG) signals and nonlinear methodology that is potentially capable of classifying 3 emotional categories.
References
More filters
Journal ArticleDOI

Measuring the Strangeness of Strange Attractors

TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.
Journal ArticleDOI

Recurrence Plots of Dynamical Systems

TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Journal ArticleDOI

Embeddings and delays as derived from quantification of recurrence plots

TL;DR: Recurrence plots have been advocated as a useful diagnostic tool for the assessment of dynamical time series by quantifying certain features of these plots which may be helpful in determining embeddings and delays.
Journal ArticleDOI

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

TL;DR: In this paper, it was shown that the correlation dimension of the Grassberger-Procaccia algorithm cannot exceed the value 2 log 10N if N is the number of points in the time series, and when this bound is saturated it is thus not legitimate to conclude that low dimensional dynamics is present.
Related Papers (5)