scispace - formally typeset
Journal ArticleDOI

Dynamical assessment of physiological systems and states using recurrence plot strategies

Charles L. Webber, +1 more
- 01 Feb 1994 - 
- Vol. 76, Iss: 2, pp 965-973
Reads0
Chats0
TLDR
This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract
Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

read more

Citations
More filters
Journal ArticleDOI

EEG recurrence markers and sleep quality

TL;DR: It is shown that EEG markers formed using the variable percent recurrence reliably quantified two related aspects of sleep quality, sleep depth and sleep fragmentation in patients where improved sleep quality occurred when assessed by polysomnography.
Book ChapterDOI

Fast Computation of Recurrences in Long Time Series

TL;DR: An approach to recurrence quantification analysis (RQA) that allows to process very long time series fast and utilizes the paradigm Divide and Recombine to address the specific challenges of subdividing the recurrence matrix.
Journal ArticleDOI

Stochastic description of the deterministic Ricker's population model.

TL;DR: In this article, the authors adopt the 0-1 test for chaos using Brownian motion chains to identify the dynamics of the Ricker's population model and confirm the identified regular and chaotic types of solutions by recurrence plots.
Journal IssueDOI

Biotic complexity of population dynamics

Hector Sabelli, +1 more
- 01 Mar 2008 - 
TL;DR: Bios, a nonstationary pattern generated by bipolar feedback and multi-agent predator–prey simulations, is proposed, a generic process that contributes to the evolutionary generation of complexity at multiple levels of organization.
Journal ArticleDOI

A Time Series Approach to Random Number Generation: Using Recurrence Quantification Analysis to Capture Executive Behavior

TL;DR: The utility of recurrence quantification analysis (RQA), a non-linear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures is explored.
References
More filters
Journal ArticleDOI

Measuring the Strangeness of Strange Attractors

TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.
Journal ArticleDOI

Recurrence Plots of Dynamical Systems

TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Journal ArticleDOI

Embeddings and delays as derived from quantification of recurrence plots

TL;DR: Recurrence plots have been advocated as a useful diagnostic tool for the assessment of dynamical time series by quantifying certain features of these plots which may be helpful in determining embeddings and delays.
Journal ArticleDOI

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

TL;DR: In this paper, it was shown that the correlation dimension of the Grassberger-Procaccia algorithm cannot exceed the value 2 log 10N if N is the number of points in the time series, and when this bound is saturated it is thus not legitimate to conclude that low dimensional dynamics is present.
Related Papers (5)