scispace - formally typeset
Journal ArticleDOI

Dynamical assessment of physiological systems and states using recurrence plot strategies

Charles L. Webber, +1 more
- 01 Feb 1994 - 
- Vol. 76, Iss: 2, pp 965-973
Reads0
Chats0
TLDR
This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract
Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

read more

Citations
More filters
Proceedings ArticleDOI

Inferring causality from noisy time series data

TL;DR: In this paper, the authors assess the strengths and weaknesses of CCM by varying coupling strength and noise levels in coupled logistic maps and find that the presence of noise deterministically reduces the level of cross-mapping fidelity while the convergence rate exhibits higher levels of robustness.
Journal ArticleDOI

Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK

TL;DR: In this paper, a combination of Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) was used to find that the change in the Gate Closure (GC) interval from 3.5'h to 1'h before real-time has caused a permanent alteration in the UK spot price volatility.
Journal ArticleDOI

Recurrence plot analyses suggest a novel reference system involved in newborn spontaneous movements.

TL;DR: An inquiry in which a novel reference system of spontaneous newborn movements is uncovered is reported in the framework of home base behavior, which uncovered new insights into the spatial and temporal organization of limb movements.

Dance: The human body as a dynamic motion system

TL;DR: Grammer and Obersaucher as discussed by the authors proposed a method to detect brain structures in the human brain based on a corpus of human brain activity and showed that the method can be used to identify brain structures.
Book ChapterDOI

Analysis and Preprocessing of HRV—Kubios HRV Software

TL;DR: In this article, the authors propose a method to solve the problem of "crowdsourcing" in the context of artificial intelligence. 7.7.1.1].
References
More filters
Journal ArticleDOI

Measuring the Strangeness of Strange Attractors

TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.
Journal ArticleDOI

Recurrence Plots of Dynamical Systems

TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Journal ArticleDOI

Embeddings and delays as derived from quantification of recurrence plots

TL;DR: Recurrence plots have been advocated as a useful diagnostic tool for the assessment of dynamical time series by quantifying certain features of these plots which may be helpful in determining embeddings and delays.
Journal ArticleDOI

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

TL;DR: In this paper, it was shown that the correlation dimension of the Grassberger-Procaccia algorithm cannot exceed the value 2 log 10N if N is the number of points in the time series, and when this bound is saturated it is thus not legitimate to conclude that low dimensional dynamics is present.
Related Papers (5)