scispace - formally typeset
Journal ArticleDOI

Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors.

TLDR
It is shown that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers.
Abstract
Theoretical investigations of charge transport in organic materials are generally based on the "energy splitting in dimer" method and routinely assume that the transport parameters (site energies and transfer integrals) determined from monomer and dimer calculations can be reliably used to describe extended systems. Here, we demonstrate that this transferability can fail even in molecular crystals with weak van der Waals intermolecular interactions, due to the substantial (but often ignored) impact of polarization effects, particularly on the site energies. We show that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers. The polarization effect in these systems is largely electrostatic in nature and can change dramatically upon transition from a dimer to an extended system. For example, the difference in site energy for a prototypical "face-to-edge" one-dimensional stack of pentacene molecules is calculated to be 30% greater than that in the "face-to-edge" dimer, whereas the site energy difference in the pentacene crystal is vanishingly small. Importantly, when computed directly in the framework of localized monomer orbitals, the transfer integral values for dimer and extended systems are very similar.

read more

Citations
More filters
Journal ArticleDOI

Charge transport in organic semiconductors.

TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Journal ArticleDOI

Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer.

TL;DR: This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated.
Journal ArticleDOI

Role of Molecular Order and Solid-State Structure in Organic Field-Effect Transistors

TL;DR: Organic Semiconductor/Dielectric Interface 6.2.1.
Journal ArticleDOI

Computational methods for design of organic materials with high charge mobility

TL;DR: This tutorial review describes recent progresses in developing computational tools to assess the carrier mobility in organic molecular semiconductors at the first-principles level.
Journal ArticleDOI

Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors.

TL;DR: The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications.
References
More filters
Journal ArticleDOI

Organic Electroluminescent Diodes

TL;DR: In this article, a double-layer structure of organic thin films was prepared by vapor deposition, and efficient injection of holes and electrons was provided from an indium-tinoxide anode and an alloyed Mg:Ag cathode.
Journal ArticleDOI

Light-emitting diodes based on conjugated polymers

TL;DR: In this article, the authors demonstrate that poly(p-phenylene vinylene), prepared by way of a solution-processable precursor, can be used as the active element in a large-area light-emitting diode.
Journal ArticleDOI

On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals

TL;DR: In this article, the authors show that the overlap integrals are of essential importance in molecules and in crystals, instead of being negligible, and the problem is simply solved by considering the orthonormalized functions [open phi]μ, given by (21), as the real atomic orbitals.
Journal ArticleDOI

Integrated Optoelectronic Devices Based on Conjugated Polymers

TL;DR: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor driving a polymer light-emitting diode (LED) of similar size, which represents a step toward all- polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.
Related Papers (5)