scispace - formally typeset
Journal ArticleDOI

Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)

Dongsheng Wen, +1 more
- 01 Oct 2004 - 
- Vol. 18, Iss: 4, pp 481-485
TLDR
In this paper, the effects of concentration of carbon nanotubes and temperature on effective thermal conductivity were investigated, and it was found that effective thermal conduction increased with increasing concentration of the carbon-nanotubes, and the dependence was nonlinear even at very low concentrations.
Abstract
This work is concerned with the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes (nanofluids). Stable nanofluids were made using sodium dodecylbenzene sulfonate as the dispersant. The effects of concentration of carbon nanotubes and temperature on effective thermal conductivity were investigated. It was found that effective thermal conductivity increased with increasing concentration of carbon nanotubes, and the dependence was nonlinear even at very low concentrations, which was different from the results for metal/metal oxide nanofluids. The effective thermal conductivity increased with increasing temperature, and the dependence was also nonlinear. At temperatures lower than ∼30 ◦ C, approximately linear dependence of the thermal conductivity enhancement on temperature was seen, but the dependence tended to level off above ∼30◦C. A comparison between the results of this work and those of published studies showed a large discrepancy in the effective thermal conductivity of carbon nanotube nanofluids. Differences in the interfacial resistances and thermal conductivities of carbon nanotubes used in these studies were proposed to be the main reasons. The experimental results were also compared with some classical macroscopic models for thermal conductivity of homogenous mixtures containing micrometer- or millimeter-sized particles. It was shown that the macroscopic models were inadequate for the prediction of the effective thermal conductivity of nanofluids. Analysis of possible mechanisms for thermal conduction enhancement suggested that networking of carbonnanotubes was likely to be responsible for the observed high effective thermal conductivity of carbon-nanotube nanofluids. Experiments at a temperature above 60‐70 ◦ C showed that the dispersant failed, which led to destabilization of nanofluids.

read more

Citations
More filters
Journal ArticleDOI

Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review

TL;DR: In this article, the status of worldwide research in the thermal conductivity of carbon nanotubes and their polymer nanocomposites is reviewed, as well as the relationship between thermal conductivities and the micro- and nano-structure of the composites.
Journal ArticleDOI

Heat transfer characteristics of nanofluids: a review

TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Journal ArticleDOI

Review of convective heat transfer enhancement with nanofluids

TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the forced convection heat transfer with nanofluids, including simulations, simulations, and experimental results.
Journal ArticleDOI

A review on applications and challenges of nanofluids

TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Journal ArticleDOI

Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)

TL;DR: In this paper, the authors studied the heat transfer behavior of aqueous suspensions of multi-walled carbon nanotubes (CNT nanofluids) flowing through a horizontal tube.
References
More filters
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Thermal transport measurements of individual multiwalled nanotubes.

TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Related Papers (5)