scispace - formally typeset
Journal ArticleDOI

Effective thermal conductivity of particulate composites with interfacial thermal resistance

Ce-Wen Nan, +3 more
- 15 May 1997 - 
- Vol. 81, Iss: 10, pp 6692-6699
Reads0
Chats0
TLDR
In this article, a methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance.
Abstract
A methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance. Results of the present model are compared to existing models and available experimental results. The proposed approach rediscovers the existing theoretical results for simple limiting cases. The comparisons between the predicted and experimental results of particulate diamond reinforced ZnS matrix and cordierite matrix composites and the particulate SiC reinforced Al matrix composite show good agreement. Numerical calculations of these different sets of composites show very interesting predictions concerning the effects of the particle shape and size and the interfacial thermal resistance.

read more

Citations
More filters
Journal ArticleDOI

Nanoscale thermal transport

TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Journal ArticleDOI

Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review

TL;DR: In this article, the status of worldwide research in the thermal conductivity of carbon nanotubes and their polymer nanocomposites is reviewed, as well as the relationship between thermal conductivities and the micro- and nano-structure of the composites.
Journal ArticleDOI

Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications

TL;DR: In this article, the fundamental design principles of highly thermally conductive composites were discussed and the key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed.
Journal ArticleDOI

Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials

TL;DR: The modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface.
Journal ArticleDOI

Emerging challenges and materials for thermal management of electronics

TL;DR: In this paper, a number of cubic crystals, two-dimensional layered materials, nanostructure networks and composites, molecular layers and surface functionalization, and aligned polymer structures are examined for potential applications as heat spreading layers and substrates, thermal interface materials, and underfill materials in future-generation electronics.
References
More filters
Journal ArticleDOI

Average stress in matrix and average elastic energy of materials with misfitting inclusions

TL;DR: In this paper, a method of calculating the average internal stress in the matrix of a material containing inclusions with transformation strain is presented. But the authors do not consider the effects of the interaction among the inclusions and of the presence of the free boundary.
Journal ArticleDOI

Thermal boundary resistance

TL;DR: In this article, the thermal boundary resistance at interfaces between helium and solids (Kapitza resistance) and thermal boundary resistances at interfaces interfaces between two solids are discussed for temperatures above 0.1 K. The apparent qualitative differences in the behavior of the boundary resistance in these two types of interfaces can be understood within the context of two limiting models of boundary resistance, the acoustic mismatch model, which assumes no scattering, and the diffuse mismatch model that all phonons incident on the interface will scatter.
Journal ArticleDOI

Analysis of Composite Materials—A Survey

TL;DR: In this paper, the authors review the analysis of composite materials from the applied mechanics and engineering science point of view, including elasticity, thermal expansion, moisture swelling, viscoelasticity, conductivity, static strength, and fatigue failure.
Journal ArticleDOI

LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium

TL;DR: The influence of obstacles arranged in rectangular order upon the properties of a medium was discussed in this article, where it was shown that obstacles can be arranged in a rectangular order to improve the performance of the medium.
Journal ArticleDOI

Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance

TL;DR: In this article, a modification of the original theories of Rayleigh and Maxwell permitted the deriva tion of expressions for the effective thermal conductivity of composites consisting of a continuous matrix phase with dilute concentrations of dispersions with spherical, cylin drical and flat plate geometry with a thermal barrier resistance at the interface between the components.
Related Papers (5)