scispace - formally typeset
Journal ArticleDOI

Efficient Nonfullerene Polymer Solar Cells Enabled by a Novel Wide Bandgap Small Molecular Acceptor.

Reads0
Chats0
TLDR
A wide bandgap small molecular acceptor, SFBRCN, containing a 3D spirobifluorene core flaked with a 2,1,3-benzothiadiazole (BT) and end-capped with highly electron-deficient RCN units, has been successfully synthesized as a small molecularacceptor (SMA) for nonfullerene polymer solar cells (PSCs).
Abstract
A wide bandgap small molecular acceptor, SFBRCN, containing a 3D spirobifluorene core flaked with a 2,1,3-benzothiadiazole (BT) and end-capped with highly electron-deficient (3-ethylhexyl-4-oxothiazolidine-2-yl)dimalononitrile (RCN) units, has been successfully synthesized as a small molecular acceptor (SMA) for nonfullerene polymer solar cells (PSCs). This SMA exhibits a relatively wide optical bandgap of 2.03 eV, which provides a complementary absorption to commonly used low bandgap donor polymers, such as PTB7-Th. The strong electron-deficient BT and RCN units afford SFBRCN with a low-lying LUMO (lowest unoccupied molecular orbital) level, while the 3D structured spirobifluorene core can effectively suppress the self-aggregation tendency of the SMA, thus yielding a polymer:SMA blend with reasonably small domain size. As the results of such molecular design, SFBRCN enables nonfullerene PSCs with a high efficiency of 10.26%, which is the highest performance reported to date for a large bandgap nonfullerene SMA.

read more

Citations
More filters
Journal ArticleDOI

Wide-Bandgap Small Molecular Acceptors Based on a Weak Electron-Withdrawing Moiety for Efficient Polymer Solar Cells

TL;DR: Zhang et al. as mentioned in this paper reported that the research reported in this paper was also supported by funding from King Abdullah University of Science and Technology (KAUST), and minor changes were made to the acknowledgements and abstract on October 16, 2018.
Journal ArticleDOI

Highly efficient and highly stable terpolymer-based all-polymer solar cells with broad complementary absorption and robust morphology

TL;DR: In this article, a conjugated terpolymer referred to as Ter-3MTTPD was successfully synthesized using 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene as a donor and methyl thiophene-3-carboxylate (3MT) and 5-(2.4-hexyl)-4H-thieno[3,4-c]pyrrole-4,
Journal ArticleDOI

Tandem structure: a breakthrough in power conversion efficiency for highly efficient polymer solar cells

TL;DR: In this article, a comprehensive review of the recent developments in polymer TSCs, enumerate the current problems and challenges that they face, and suggest a series of countermeasures for their future development.
Journal ArticleDOI

Fused pentacyclic electron acceptors with four cis-arranged alkyl side chains for efficient polymer solar cells

TL;DR: In this article, a fused pentacyclic small molecule acceptor (IDIDT-C8) with cis-arranged alkyl side chains for the first time was synthesized.
Journal ArticleDOI

Introducing cyclic alkyl chains into small-molecule acceptors for efficient polymer solar cells

TL;DR: In this article, a new acceptor-donor-acceptor type small molecule acceptor, namely IDT-HN, has been developed, which consists of a newly developed 2-(3-oxo-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile as the peripheral electron-withdrawing group and indaceno[1,2-b:5, 6-b′]dithiophene as
References
More filters
Journal ArticleDOI

An electron acceptor challenging fullerenes for efficient polymer solar cells.

TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Journal ArticleDOI

Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability

TL;DR: A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene -based PSCs with respect to the power-conversion efficiency and excellent thermal stability is demonstrated for the first time.
Journal ArticleDOI

25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation.

TL;DR: The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed and a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell is concluded.
Journal ArticleDOI

Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells

TL;DR: The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices.
Journal ArticleDOI

Fast charge separation in a non-fullerene organic solar cell with a small driving force

TL;DR: In this article, fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs), and in state-of-the-art OSCs, this is usually achieved by a significant driv
Related Papers (5)