scispace - formally typeset
Open AccessJournal ArticleDOI

Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets

TLDR
It is demonstrated that efficient fixation of N2 to NH3 can proceed under room temperature and atmospheric pressure in water using visible light illuminated BiOBr nanosheets of oxygen vacancies in the absence of any organic scavengers and precious-metal cocatalysts.
Abstract
Even though the well-established Haber–Bosch process has been the major artificial way to “fertilize” the earth, its energy-intensive nature has been motivating people to learn from nitrogenase, which can fix atmospheric N2 to NH3 in vivo under mild conditions with its precisely arranged proteins Here we demonstrate that efficient fixation of N2 to NH3 can proceed under room temperature and atmospheric pressure in water using visible light illuminated BiOBr nanosheets of oxygen vacancies in the absence of any organic scavengers and precious-metal cocatalysts The designed catalytic oxygen vacancies of BiOBr nanosheets on the exposed {001} facets, with the availability of localized electrons for π-back-donation, have the ability to activate the adsorbed N2, which can thus be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr nanosheets This study might open up a new vista to fix atmospheric N2 to NH3 through the less energy-demanding photochemical process

read more

Citations
More filters
Journal ArticleDOI

Emerging Two-Dimensional Nanomaterials for Electrocatalysis

TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Journal ArticleDOI

Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions

TL;DR: The recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed and an overview of the defects in carbon-based, metal-free electrocatalysis for ORR and various defects in metal oxides/selenides for OER is provided.
Journal ArticleDOI

Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions

TL;DR: In this article, the rational design of electrocatalysts and photo(electro) catalysts for N2 reduction to NH3 under ambient conditions is highlighted, with a special emphasis on the relationship between their physicochemical properties and NH3 production performance.
Journal ArticleDOI

Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives.

TL;DR: This Review endeavors to clarify the inherent functionality of OVs in photocatalysis at the surface molecular level using 2D BiOCl as the platform, and offers new perspectives and guidelines for the rational design of catalysts with satisfactory performance.
Journal ArticleDOI

Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts.

TL;DR: This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single-atom catalysts.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity

TL;DR: Platinum NCs of unusual tetrahexahedral (THH) shape were prepared at high yield by an electrochemical treatment of Pt nanospheres supported on glassy carbon by a square-wave potential to exhibit much enhanced catalytic activity for equivalent Pt surface areas for electro-oxidation of small organic fuels such as formic acid and ethanol.
Related Papers (5)