scispace - formally typeset
Open AccessJournal ArticleDOI

Emission of trace gases and aerosols from biomass burning

Meinrat O. Andreae, +1 more
- 01 Dec 2001 - 
- Vol. 15, Iss: 4, pp 955-966
Reads0
Chats0
TLDR
In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract
A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

read more

Citations
More filters
Journal ArticleDOI

Changes in Fire Regimes Since the Last Glacial Maximum: An Assessment Based on a Global Synthesis and Analysis of Charcoal Data

TL;DR: This article synthesized sedimentary charcoal records of biomass burning since the last glacial maximum (LGM) and present global maps showing changes in fire activity for time slices during the past 21,000 years.
Journal ArticleDOI

Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.

TL;DR: Although there is substantial evidence that PAH or substituted PAH may be causative agent in cancer and reproductive effects, an increasing number of studies investigating cardiopulmonary and cardiovascular effects are investigating these and other potential causative agents from air pollution combustion sources.
Journal ArticleDOI

An assessment of biofuel use and burning of agricultural waste in the developing world

TL;DR: In this article, the authors present an assessment of biofuel use and agricultural field burning in the developing world, using information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries.
Journal ArticleDOI

Residential Biofuels in South Asia: Carbonaceous Aerosol Emissions and Climate Impacts

TL;DR: It is calculated that biofuel combustion is the largest source of black carbon emissions in India, and it is suggested that its control is central to climate change mitigation in the south Asian region.
Journal ArticleDOI

Source profiles of volatile organic compounds (VOCs) measured in China. Part I

TL;DR: In this paper, the profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined.
References
More filters
Journal ArticleDOI

Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles

TL;DR: Widespread burning of biomass serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses, but it may also disturb biogeochemical cycles, especially that of nitrogen.
Journal ArticleDOI

Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning

TL;DR: In this paper, the authors estimated the global amounts of biomass which are affected by fires, and estimated an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr.
Journal ArticleDOI

Biomass burning as a source of atmospheric gases CO, H 2 , N 2 O, NO, CH 3 Cl and COS

TL;DR: In this article, it was shown that most biomass burning takes place in the tropics in the dry season and is caused by man's activities, which can contribute extensively to the budgets of several gases which are important in atmospheric chemistry.
Journal ArticleDOI

Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols

TL;DR: During a cruise from Hamburg to Montevideo, aerosol samples representing air masses from Europe, the Sahara, tropical Africa, South America, and open oceanic regions were collected and the ratio of soot carbon to fine carbon suggests that most of the particulate organic carbon over the Atlantic is of continental origin.

Global biomass burning: atmospheric, climatic, and biospheric implications.

TL;DR: The 1990 American Geophysical Union's Conference on Biochemical burning as discussed by the authors was attended by more than 175 participants representing 19 countries and discussed remote sensing data concerning biomass burning, gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect.
Related Papers (5)