scispace - formally typeset
Open AccessJournal ArticleDOI

Emission of trace gases and aerosols from biomass burning

Meinrat O. Andreae, +1 more
- 01 Dec 2001 - 
- Vol. 15, Iss: 4, pp 955-966
Reads0
Chats0
TLDR
In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract
A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

read more

Citations
More filters
Journal ArticleDOI

Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release

TL;DR: In this paper, the authors present results from a sensitivity analysis and from experimental fires conducted to investigate the relationship between fire radiative energy (FRE) and fuel mass combusted, and they conclude that FRE assessment offers a powerful tool for supplementing existing burned-area based fuel consumption measures.
Journal ArticleDOI

Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry

TL;DR: The findings indicate the potential of performing organic source apportionment on the basis of total particle mass, rather than on the based of organic tracer compounds that contribute a small fraction of this mass.
Journal ArticleDOI

Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols

TL;DR: In this paper, a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including the best knowledge of source and sink processes was conducted.
Journal ArticleDOI

Estimated Global Mortality Attributable to Smoke from Landscape Fires

TL;DR: Fire emissions are an important contributor to global mortality and could be substantially reduced by curtailing burning of tropical rainforests, which rarely burn naturally.
Journal ArticleDOI

Evaluation of black carbon estimations in global aerosol models

Dorothy Koch, +54 more
TL;DR: In this paper, the authors evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements.
References
More filters
Journal ArticleDOI

Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles

TL;DR: Widespread burning of biomass serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses, but it may also disturb biogeochemical cycles, especially that of nitrogen.
Journal ArticleDOI

Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning

TL;DR: In this paper, the authors estimated the global amounts of biomass which are affected by fires, and estimated an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr.
Journal ArticleDOI

Biomass burning as a source of atmospheric gases CO, H 2 , N 2 O, NO, CH 3 Cl and COS

TL;DR: In this article, it was shown that most biomass burning takes place in the tropics in the dry season and is caused by man's activities, which can contribute extensively to the budgets of several gases which are important in atmospheric chemistry.
Journal ArticleDOI

Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols

TL;DR: During a cruise from Hamburg to Montevideo, aerosol samples representing air masses from Europe, the Sahara, tropical Africa, South America, and open oceanic regions were collected and the ratio of soot carbon to fine carbon suggests that most of the particulate organic carbon over the Atlantic is of continental origin.

Global biomass burning: atmospheric, climatic, and biospheric implications.

TL;DR: The 1990 American Geophysical Union's Conference on Biochemical burning as discussed by the authors was attended by more than 175 participants representing 19 countries and discussed remote sensing data concerning biomass burning, gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect.
Related Papers (5)