scispace - formally typeset
Journal ArticleDOI

Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement

Chan Hee Chon, +3 more
- 05 Oct 2005 - 
- Vol. 87, Iss: 15, pp 153107
Reads0
Chats0
TLDR
In this paper, an experimental correlation for the thermal conductivity of Al2O3 nanofluids as a function of nanoparticle size over a wide range of temperature (from 21 to 71°C).
Abstract
In this letter, we report an experimental correlation [Eqs. (1a) and (1b) or (1c)] for the thermal conductivity of Al2O3 nanofluids as a function of nanoparticle size (ranging from 11nmto150nm nominal diameters) over a wide range of temperature (from 21to71°C). Following the previously proposed conjecture from the theoretical point-of-view (Jang and Choi, 2004), it is experimentally validated that the Brownian motion of nanoparticles constitutes a key mechanism of the thermal conductivity enhancement with increasing temperature and decreasing nanoparticle sizes.

read more

Citations
More filters
Journal ArticleDOI

A review on applications and challenges of nanofluids

TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Journal ArticleDOI

A review of the applications of nanofluids in solar energy

TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Journal ArticleDOI

Heat Transfer in Nanofluids—A Review

TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Journal ArticleDOI

Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements

TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Journal ArticleDOI

Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids

TL;DR: In this article, two empirical correlations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, based on a high number of experimental data available in the literature, are proposed and discussed.
References
More filters
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Anomalous thermal conductivity enhancement in nanotube suspensions

TL;DR: In this paper, the authors have produced nanotube-in-oil suspensions and measured their effective thermal conductivity, which is anomalously greater than theoretical predictions and is nonlinear with nanotubes loadings.
Related Papers (5)